ALT-BU-2024-14280-2
Branch sisyphus update bulletin.
Package daemontools-encore updated to version 1.10-alt3 for branch sisyphus in task 359960.
Closed bugs
Оторвать зависимость от startup
Closed bugs
Нет нужных provides
Прошу обновить пакет kitty
Closed vulnerabilities
BDU:2024-07696
Уязвимость реализации прикладного программного интерфейса Endpoint платформы для мониторинга и наблюдения Grafana, позволяющая нарушителю повысить свои привилегии
Modified: 2024-09-30
CVE-2024-8118
In Grafana, the wrong permission is applied to the alert rule write API endpoint, allowing users with permission to write external alert instances to also write alert rules.
Package kernel-image-6.6 updated to version 6.6.57-alt1 for branch sisyphus in task 360053.
Closed vulnerabilities
BDU:2024-08973
Уязвимость функции cdns_i3c_master_remove() ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации.
BDU:2024-08977
Уязвимость функции switchtec_ntb_remove() ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации.
BDU:2024-09010
Уязвимость функции hci_enhanced_setup_sync() ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации
BDU:2024-09012
Уязвимость функции decrypt_raw_data() подсистемы SMB ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации.
BDU:2024-09013
Уязвимость функции bus_register() ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации.
BDU:2025-00170
Уязвимость функции sisfb_search_mode() в модуле drivers/video/fbdev/sis/sis_main.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации
Modified: 2024-10-25
CVE-2024-50019
In the Linux kernel, the following vulnerability has been resolved:
kthread: unpark only parked kthread
Calling into kthread unparking unconditionally is mostly harmless when
the kthread is already unparked. The wake up is then simply ignored
because the target is not in TASK_PARKED state.
However if the kthread is per CPU, the wake up is preceded by a call
to kthread_bind() which expects the task to be inactive and in
TASK_PARKED state, which obviously isn't the case if it is unparked.
As a result, calling kthread_stop() on an unparked per-cpu kthread
triggers such a warning:
WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525
- https://git.kernel.org/stable/c/19a5029981c87c2ad0845e713837faa88f5d8e2b
- https://git.kernel.org/stable/c/214e01ad4ed7158cab66498810094fac5d09b218
- https://git.kernel.org/stable/c/40a6e660d2a3a7a5cb99f0b8ff4fb41bad039f68
- https://git.kernel.org/stable/c/8608196a155cb6cfae04d96b10a2652d0327e33f
- https://git.kernel.org/stable/c/cda5423c1a1c906062ef235c940f249b97d9d135
Modified: 2024-10-25
CVE-2024-50022
In the Linux kernel, the following vulnerability has been resolved: device-dax: correct pgoff align in dax_set_mapping() pgoff should be aligned using ALIGN_DOWN() instead of ALIGN(). Otherwise, vmf->address not aligned to fault_size will be aligned to the next alignment, that can result in memory failure getting the wrong address. It's a subtle situation that only can be observed in page_mapped_in_vma() after the page is page fault handled by dev_dax_huge_fault. Generally, there is little chance to perform page_mapped_in_vma in dev-dax's page unless in specific error injection to the dax device to trigger an MCE - memory-failure. In that case, page_mapped_in_vma() will be triggered to determine which task is accessing the failure address and kill that task in the end. We used self-developed dax device (which is 2M aligned mapping) , to perform error injection to random address. It turned out that error injected to non-2M-aligned address was causing endless MCE until panic. Because page_mapped_in_vma() kept resulting wrong address and the task accessing the failure address was never killed properly: [ 3783.719419] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3784.049006] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3784.049190] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3784.448042] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3784.448186] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3784.792026] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3784.792179] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3785.162502] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3785.162633] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3785.461116] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3785.461247] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3785.764730] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3785.764859] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3786.042128] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3786.042259] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3786.464293] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3786.464423] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3786.818090] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3786.818217] Memory failure: 0x200c9742: recovery action for dax page: Recovered [ 3787.085297] mce: Uncorrected hardware memory error in user-access at 200c9742380 [ 3787.085424] Memory failure: 0x200c9742: recovery action for dax page: Recovered It took us several weeks to pinpoint this problem, but we eventually used bpftrace to trace the page fault and mce address and successfully identified the issue. Joao added: ; Likely we never reproduce in production because we always pin : device-dax regions in the region align they provide (Qemu does : similarly with prealloc in hugetlb/file backed memory). I think this : bug requires that we touch *unpinned* device-dax regions unaligned to : the device-dax selected alignment (page size i.e. 4K/2M/1G)
Modified: 2024-10-25
CVE-2024-50023
In the Linux kernel, the following vulnerability has been resolved: net: phy: Remove LED entry from LEDs list on unregister Commit c938ab4da0eb ("net: phy: Manual remove LEDs to ensure correct ordering") correctly fixed a problem with using devm_ but missed removing the LED entry from the LEDs list. This cause kernel panic on specific scenario where the port for the PHY is torn down and up and the kmod for the PHY is removed. On setting the port down the first time, the assosiacted LEDs are correctly unregistered. The associated kmod for the PHY is now removed. The kmod is now added again and the port is now put up, the associated LED are registered again. On putting the port down again for the second time after these step, the LED list now have 4 elements. With the first 2 already unregistered previously and the 2 new one registered again. This cause a kernel panic as the first 2 element should have been removed. Fix this by correctly removing the element when LED is unregistered.
Modified: 2024-11-08
CVE-2024-50024
In the Linux kernel, the following vulnerability has been resolved: net: Fix an unsafe loop on the list The kernel may crash when deleting a genetlink family if there are still listeners for that family: Oops: Kernel access of bad area, sig: 11 [#1] ... NIP [c000000000c080bc] netlink_update_socket_mc+0x3c/0xc0 LR [c000000000c0f764] __netlink_clear_multicast_users+0x74/0xc0 Call Trace: __netlink_clear_multicast_users+0x74/0xc0 genl_unregister_family+0xd4/0x2d0 Change the unsafe loop on the list to a safe one, because inside the loop there is an element removal from this list.
- https://git.kernel.org/stable/c/1cdec792b2450105b1314c5123a9a0452cb2c2f0
- https://git.kernel.org/stable/c/1dae9f1187189bc09ff6d25ca97ead711f7e26f9
- https://git.kernel.org/stable/c/3be342e0332a7c83eb26fbb22bf156fdca467a5d
- https://git.kernel.org/stable/c/464801a0f6ccb52b21faa33bac6014fd74cc5e10
- https://git.kernel.org/stable/c/49f9b726bf2bf3dd2caf0d27cadf4bc1ccf7a7dd
- https://git.kernel.org/stable/c/5f03a7f601f33cda1f710611625235dc86fd8a9e
- https://git.kernel.org/stable/c/68ad5da6ca630a276f0a5c924179e57724d00013
- https://git.kernel.org/stable/c/8e0766fcf37ad8eed289dd3853628dd9b01b58b0
Modified: 2024-10-25
CVE-2024-50026
In the Linux kernel, the following vulnerability has been resolved: scsi: wd33c93: Don't use stale scsi_pointer value A regression was introduced with commit dbb2da557a6a ("scsi: wd33c93: Move the SCSI pointer to private command data") which results in an oops in wd33c93_intr(). That commit added the scsi_pointer variable and initialized it from hostdata->connected. However, during selection, hostdata->connected is not yet valid. Fix this by getting the current scsi_pointer from hostdata->selecting.
Modified: 2024-10-25
CVE-2024-50029
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix UAF in hci_enhanced_setup_sync
This checks if the ACL connection remains valid as it could be destroyed
while hci_enhanced_setup_sync is pending on cmd_sync leading to the
following trace:
BUG: KASAN: slab-use-after-free in hci_enhanced_setup_sync+0x91b/0xa60
Read of size 1 at addr ffff888002328ffd by task kworker/u5:2/37
CPU: 0 UID: 0 PID: 37 Comm: kworker/u5:2 Not tainted 6.11.0-rc6-01300-g810be445d8d6 #7099
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
Modified: 2024-10-25
CVE-2024-50031
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Stop the active perfmon before being destroyed When running `kmscube` with one or more performance monitors enabled via `GALLIUM_HUD`, the following kernel panic can occur: [ 55.008324] Unable to handle kernel paging request at virtual address 00000000052004a4 [ 55.008368] Mem abort info: [ 55.008377] ESR = 0x0000000096000005 [ 55.008387] EC = 0x25: DABT (current EL), IL = 32 bits [ 55.008402] SET = 0, FnV = 0 [ 55.008412] EA = 0, S1PTW = 0 [ 55.008421] FSC = 0x05: level 1 translation fault [ 55.008434] Data abort info: [ 55.008442] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 55.008455] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 55.008467] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 55.008481] user pgtable: 4k pages, 39-bit VAs, pgdp=00000001046c6000 [ 55.008497] [00000000052004a4] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [ 55.008525] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP [ 55.008542] Modules linked in: rfcomm [...] vc4 v3d snd_soc_hdmi_codec drm_display_helper gpu_sched drm_shmem_helper cec drm_dma_helper drm_kms_helper i2c_brcmstb drm drm_panel_orientation_quirks snd_soc_core snd_compress snd_pcm_dmaengine snd_pcm snd_timer snd backlight [ 55.008799] CPU: 2 PID: 166 Comm: v3d_bin Tainted: G C 6.6.47+rpt-rpi-v8 #1 Debian 1:6.6.47-1+rpt1 [ 55.008824] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT) [ 55.008838] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 55.008855] pc : __mutex_lock.constprop.0+0x90/0x608 [ 55.008879] lr : __mutex_lock.constprop.0+0x58/0x608 [ 55.008895] sp : ffffffc080673cf0 [ 55.008904] x29: ffffffc080673cf0 x28: 0000000000000000 x27: ffffff8106188a28 [ 55.008926] x26: ffffff8101e78040 x25: ffffff8101baa6c0 x24: ffffffd9d989f148 [ 55.008947] x23: ffffffda1c2a4008 x22: 0000000000000002 x21: ffffffc080673d38 [ 55.008968] x20: ffffff8101238000 x19: ffffff8104f83188 x18: 0000000000000000 [ 55.008988] x17: 0000000000000000 x16: ffffffda1bd04d18 x15: 00000055bb08bc90 [ 55.009715] x14: 0000000000000000 x13: 0000000000000000 x12: ffffffda1bd4cbb0 [ 55.010433] x11: 00000000fa83b2da x10: 0000000000001a40 x9 : ffffffda1bd04d04 [ 55.011162] x8 : ffffff8102097b80 x7 : 0000000000000000 x6 : 00000000030a5857 [ 55.011880] x5 : 00ffffffffffffff x4 : 0300000005200470 x3 : 0300000005200470 [ 55.012598] x2 : ffffff8101238000 x1 : 0000000000000021 x0 : 0300000005200470 [ 55.013292] Call trace: [ 55.013959] __mutex_lock.constprop.0+0x90/0x608 [ 55.014646] __mutex_lock_slowpath+0x1c/0x30 [ 55.015317] mutex_lock+0x50/0x68 [ 55.015961] v3d_perfmon_stop+0x40/0xe0 [v3d] [ 55.016627] v3d_bin_job_run+0x10c/0x2d8 [v3d] [ 55.017282] drm_sched_main+0x178/0x3f8 [gpu_sched] [ 55.017921] kthread+0x11c/0x128 [ 55.018554] ret_from_fork+0x10/0x20 [ 55.019168] Code: f9400260 f1001c1f 54001ea9 927df000 (b9403401) [ 55.019776] ---[ end trace 0000000000000000 ]--- [ 55.020411] note: v3d_bin[166] exited with preempt_count 1 This issue arises because, upon closing the file descriptor (which happens when we interrupt `kmscube`), the active performance monitor is not stopped. Although all perfmons are destroyed in `v3d_perfmon_close_file()`, the active performance monitor's pointer (`v3d->active_perfmon`) is still retained. If `kmscube` is run again, the driver will attempt to stop the active performance monitor using the stale pointer in `v3d->active_perfmon`. However, this pointer is no longer valid because the previous process has already terminated, and all performance monitors associated with it have been destroyed and freed. To fix this, when the active performance monitor belongs to a given process, explicitly stop it before destroying and freeing it.
- https://git.kernel.org/stable/c/07c51108d9e278831c16191d1223ee49986e7890
- https://git.kernel.org/stable/c/0c9e9a3a4873705740b19300cadc6599170646ef
- https://git.kernel.org/stable/c/24ab54a066d2ef671b03eb909ca2114c0c9ac1e7
- https://git.kernel.org/stable/c/333767cbce6ac20ec794c76eec82ed0ef55022db
- https://git.kernel.org/stable/c/7d1fd3638ee3a9f9bca4785fffb638ca19120718
Modified: 2024-10-25
CVE-2024-50032
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix rcuog wake-up from offline softirq
After a CPU has set itself offline and before it eventually calls
rcutree_report_cpu_dead(), there are still opportunities for callbacks
to be enqueued, for example from a softirq. When that happens on NOCB,
the rcuog wake-up is deferred through an IPI to an online CPU in order
not to call into the scheduler and risk arming the RT-bandwidth after
hrtimers have been migrated out and disabled.
But performing a synchronized IPI from a softirq is buggy as reported in
the following scenario:
WARNING: CPU: 1 PID: 26 at kernel/smp.c:633 smp_call_function_single
Modules linked in: rcutorture torture
CPU: 1 UID: 0 PID: 26 Comm: migration/1 Not tainted 6.11.0-rc1-00012-g9139f93209d1 #1
Stopper: multi_cpu_stop+0x0/0x320 <- __stop_cpus+0xd0/0x120
RIP: 0010:smp_call_function_single
Modified: 2024-11-08
CVE-2024-50033
In the Linux kernel, the following vulnerability has been resolved: slip: make slhc_remember() more robust against malicious packets syzbot found that slhc_remember() was missing checks against malicious packets [1]. slhc_remember() only checked the size of the packet was at least 20, which is not good enough. We need to make sure the packet includes the IPv4 and TCP header that are supposed to be carried. Add iph and th pointers to make the code more readable. [1] BUG: KMSAN: uninit-value in slhc_remember+0x2e8/0x7b0 drivers/net/slip/slhc.c:666 slhc_remember+0x2e8/0x7b0 drivers/net/slip/slhc.c:666 ppp_receive_nonmp_frame+0xe45/0x35e0 drivers/net/ppp/ppp_generic.c:2455 ppp_receive_frame drivers/net/ppp/ppp_generic.c:2372 [inline] ppp_do_recv+0x65f/0x40d0 drivers/net/ppp/ppp_generic.c:2212 ppp_input+0x7dc/0xe60 drivers/net/ppp/ppp_generic.c:2327 pppoe_rcv_core+0x1d3/0x720 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1113 __release_sock+0x1da/0x330 net/core/sock.c:3072 release_sock+0x6b/0x250 net/core/sock.c:3626 pppoe_sendmsg+0x2b8/0xb90 drivers/net/ppp/pppoe.c:903 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4091 [inline] slab_alloc_node mm/slub.c:4134 [inline] kmem_cache_alloc_node_noprof+0x6bf/0xb80 mm/slub.c:4186 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:587 __alloc_skb+0x363/0x7b0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1322 [inline] sock_wmalloc+0xfe/0x1a0 net/core/sock.c:2732 pppoe_sendmsg+0x3a7/0xb90 drivers/net/ppp/pppoe.c:867 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 5460 Comm: syz.2.33 Not tainted 6.12.0-rc2-syzkaller-00006-g87d6aab2389e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
- https://git.kernel.org/stable/c/29e8d96d44f51cf89a62dd042be35d052833b95c
- https://git.kernel.org/stable/c/36b054324d18e51cf466134e13b6fbe3c91f52af
- https://git.kernel.org/stable/c/5e336384cc9b608e0551f99c3d87316ca3b0e51a
- https://git.kernel.org/stable/c/7d3fce8cbe3a70a1c7c06c9b53696be5d5d8dd5c
- https://git.kernel.org/stable/c/8bb79eb1db85a10865f0d4dd15b013def3f2d246
- https://git.kernel.org/stable/c/ba6501ea06462d6404d57d5644cf2854db38e7d7
- https://git.kernel.org/stable/c/ff5e0f895315706e4ca5a19df15be6866cee4f5d
Modified: 2024-11-08
CVE-2024-50035
In the Linux kernel, the following vulnerability has been resolved: ppp: fix ppp_async_encode() illegal access syzbot reported an issue in ppp_async_encode() [1] In this case, pppoe_sendmsg() is called with a zero size. Then ppp_async_encode() is called with an empty skb. BUG: KMSAN: uninit-value in ppp_async_encode drivers/net/ppp/ppp_async.c:545 [inline] BUG: KMSAN: uninit-value in ppp_async_push+0xb4f/0x2660 drivers/net/ppp/ppp_async.c:675 ppp_async_encode drivers/net/ppp/ppp_async.c:545 [inline] ppp_async_push+0xb4f/0x2660 drivers/net/ppp/ppp_async.c:675 ppp_async_send+0x130/0x1b0 drivers/net/ppp/ppp_async.c:634 ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2280 [inline] ppp_input+0x1f1/0xe60 drivers/net/ppp/ppp_generic.c:2304 pppoe_rcv_core+0x1d3/0x720 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1113 __release_sock+0x1da/0x330 net/core/sock.c:3072 release_sock+0x6b/0x250 net/core/sock.c:3626 pppoe_sendmsg+0x2b8/0xb90 drivers/net/ppp/pppoe.c:903 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4092 [inline] slab_alloc_node mm/slub.c:4135 [inline] kmem_cache_alloc_node_noprof+0x6bf/0xb80 mm/slub.c:4187 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:587 __alloc_skb+0x363/0x7b0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1322 [inline] sock_wmalloc+0xfe/0x1a0 net/core/sock.c:2732 pppoe_sendmsg+0x3a7/0xb90 drivers/net/ppp/pppoe.c:867 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 1 UID: 0 PID: 5411 Comm: syz.1.14 Not tainted 6.12.0-rc1-syzkaller-00165-g360c1f1f24c6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
- https://git.kernel.org/stable/c/30d91a478d58cbae3dbaa8224d17d0d839f0d71b
- https://git.kernel.org/stable/c/40dddd4b8bd08a69471efd96107a4e1c73fabefc
- https://git.kernel.org/stable/c/4151ec65abd755133ebec687218fadd2d2631167
- https://git.kernel.org/stable/c/8dfe93901b410ae41264087427f3b9f389388f83
- https://git.kernel.org/stable/c/8fe992ff3df493d1949922ca234419f3ede08dff
- https://git.kernel.org/stable/c/c007a14797240607038bd3464501109f408940e2
- https://git.kernel.org/stable/c/ce249a4c68d0ce27a8c5d853338d502e2711a314
- https://git.kernel.org/stable/c/fadf8fdb3110d3138e05c3765f645535434f8d76
Modified: 2024-11-17
CVE-2024-50036
In the Linux kernel, the following vulnerability has been resolved: net: do not delay dst_entries_add() in dst_release() dst_entries_add() uses per-cpu data that might be freed at netns dismantle from ip6_route_net_exit() calling dst_entries_destroy() Before ip6_route_net_exit() can be called, we release all the dsts associated with this netns, via calls to dst_release(), which waits an rcu grace period before calling dst_destroy() dst_entries_add() use in dst_destroy() is racy, because dst_entries_destroy() could have been called already. Decrementing the number of dsts must happen sooner. Notes: 1) in CONFIG_XFRM case, dst_destroy() can call dst_release_immediate(child), this might also cause UAF if the child does not have DST_NOCOUNT set. IPSEC maintainers might take a look and see how to address this. 2) There is also discussion about removing this count of dst, which might happen in future kernels.
- https://git.kernel.org/stable/c/3c7c918ec0aa3555372c5a57f18780b7a96c5cfc
- https://git.kernel.org/stable/c/547087307bc19417b4f2bc85ba9664a3e8db5a6a
- https://git.kernel.org/stable/c/a60db84f772fc3a906c6c4072f9207579c41166f
- https://git.kernel.org/stable/c/ac888d58869bb99753e7652be19a151df9ecb35d
- https://git.kernel.org/stable/c/e3915f028b1f1c37e87542e5aadd33728c259d96
- https://git.kernel.org/stable/c/eae7435b48ffc8e9be0ff9cfeae40af479a609dd
Modified: 2024-10-25
CVE-2024-50038
In the Linux kernel, the following vulnerability has been resolved: netfilter: xtables: avoid NFPROTO_UNSPEC where needed syzbot managed to call xt_cluster match via ebtables: WARNING: CPU: 0 PID: 11 at net/netfilter/xt_cluster.c:72 xt_cluster_mt+0x196/0x780 [..] ebt_do_table+0x174b/0x2a40 Module registers to NFPROTO_UNSPEC, but it assumes ipv4/ipv6 packet processing. As this is only useful to restrict locally terminating TCP/UDP traffic, register this for ipv4 and ipv6 family only. Pablo points out that this is a general issue, direct users of the set/getsockopt interface can call into targets/matches that were only intended for use with ip(6)tables. Check all UNSPEC matches and targets for similar issues: - matches and targets are fine except if they assume skb_network_header() is valid -- this is only true when called from inet layer: ip(6) stack pulls the ip/ipv6 header into linear data area. - targets that return XT_CONTINUE or other xtables verdicts must be restricted too, they are incompatbile with the ebtables traverser, e.g. EBT_CONTINUE is a completely different value than XT_CONTINUE. Most matches/targets are changed to register for NFPROTO_IPV4/IPV6, as they are provided for use by ip(6)tables. The MARK target is also used by arptables, so register for NFPROTO_ARP too. While at it, bail out if connbytes fails to enable the corresponding conntrack family. This change passes the selftests in iptables.git.
- https://git.kernel.org/stable/c/0bfcb7b71e735560077a42847f69597ec7dcc326
- https://git.kernel.org/stable/c/4cdc55ec6222bb195995cc58f7cb46e4d8907056
- https://git.kernel.org/stable/c/85ff9a0f793ca52c527e75cd40a69c948627ebde
- https://git.kernel.org/stable/c/8f482bb7e27b37f1f734bb9a8eeb28b23d59d189
- https://git.kernel.org/stable/c/997f67d813ce0cf5eb3cdb8f124da68141e91b6c
Modified: 2024-11-08
CVE-2024-50039
In the Linux kernel, the following vulnerability has been resolved:
net/sched: accept TCA_STAB only for root qdisc
Most qdiscs maintain their backlog using qdisc_pkt_len(skb)
on the assumption it is invariant between the enqueue()
and dequeue() handlers.
Unfortunately syzbot can crash a host rather easily using
a TBF + SFQ combination, with an STAB on SFQ [1]
We can't support TCA_STAB on arbitrary level, this would
require to maintain per-qdisc storage.
[1]
[ 88.796496] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 88.798611] #PF: supervisor read access in kernel mode
[ 88.799014] #PF: error_code(0x0000) - not-present page
[ 88.799506] PGD 0 P4D 0
[ 88.799829] Oops: Oops: 0000 [#1] SMP NOPTI
[ 88.800569] CPU: 14 UID: 0 PID: 2053 Comm: b371744477 Not tainted 6.12.0-rc1-virtme #1117
[ 88.801107] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 88.801779] RIP: 0010:sfq_dequeue (net/sched/sch_sfq.c:272 net/sched/sch_sfq.c:499) sch_sfq
[ 88.802544] Code: 0f b7 50 12 48 8d 04 d5 00 00 00 00 48 89 d6 48 29 d0 48 8b 91 c0 01 00 00 48 c1 e0 03 48 01 c2 66 83 7a 1a 00 7e c0 48 8b 3a <4c> 8b 07 4c 89 02 49 89 50 08 48 c7 47 08 00 00 00 00 48 c7 07 00
All code
========
0: 0f b7 50 12 movzwl 0x12(%rax),%edx
4: 48 8d 04 d5 00 00 00 lea 0x0(,%rdx,8),%rax
b: 00
c: 48 89 d6 mov %rdx,%rsi
f: 48 29 d0 sub %rdx,%rax
12: 48 8b 91 c0 01 00 00 mov 0x1c0(%rcx),%rdx
19: 48 c1 e0 03 shl $0x3,%rax
1d: 48 01 c2 add %rax,%rdx
20: 66 83 7a 1a 00 cmpw $0x0,0x1a(%rdx)
25: 7e c0 jle 0xffffffffffffffe7
27: 48 8b 3a mov (%rdx),%rdi
2a:* 4c 8b 07 mov (%rdi),%r8 <-- trapping instruction
2d: 4c 89 02 mov %r8,(%rdx)
30: 49 89 50 08 mov %rdx,0x8(%r8)
34: 48 c7 47 08 00 00 00 movq $0x0,0x8(%rdi)
3b: 00
3c: 48 rex.W
3d: c7 .byte 0xc7
3e: 07 (bad)
...
Code starting with the faulting instruction
===========================================
0: 4c 8b 07 mov (%rdi),%r8
3: 4c 89 02 mov %r8,(%rdx)
6: 49 89 50 08 mov %rdx,0x8(%r8)
a: 48 c7 47 08 00 00 00 movq $0x0,0x8(%rdi)
11: 00
12: 48 rex.W
13: c7 .byte 0xc7
14: 07 (bad)
...
[ 88.803721] RSP: 0018:ffff9a1f892b7d58 EFLAGS: 00000206
[ 88.804032] RAX: 0000000000000000 RBX: ffff9a1f8420c800 RCX: ffff9a1f8420c800
[ 88.804560] RDX: ffff9a1f81bc1440 RSI: 0000000000000000 RDI: 0000000000000000
[ 88.805056] RBP: ffffffffc04bb0e0 R08: 0000000000000001 R09: 00000000ff7f9a1f
[ 88.805473] R10: 000000000001001b R11: 0000000000009a1f R12: 0000000000000140
[ 88.806194] R13: 0000000000000001 R14: ffff9a1f886df400 R15: ffff9a1f886df4ac
[ 88.806734] FS: 00007f445601a740(0000) GS:ffff9a2e7fd80000(0000) knlGS:0000000000000000
[ 88.807225] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 88.807672] CR2: 0000000000000000 CR3: 000000050cc46000 CR4: 00000000000006f0
[ 88.808165] Call Trace:
[ 88.808459]
- https://git.kernel.org/stable/c/1edf039ee01788ffc25625fe58a903ae2efa213e
- https://git.kernel.org/stable/c/2acbb9539bc2284e30d2aeb789c3d96287014264
- https://git.kernel.org/stable/c/3cb7cf1540ddff5473d6baeb530228d19bc97b8a
- https://git.kernel.org/stable/c/3dc6ee96473cc2962c6db4297d4631f261be150f
- https://git.kernel.org/stable/c/76feedc74b90270390fbfdf74a2e944e96872363
- https://git.kernel.org/stable/c/8fb6503592d39065316f45d267c5527b4e7cd995
- https://git.kernel.org/stable/c/adbc3eef43fc94c7c8436da832691ae02333a972
Modified: 2024-11-08
CVE-2024-50040
In the Linux kernel, the following vulnerability has been resolved:
igb: Do not bring the device up after non-fatal error
Commit 004d25060c78 ("igb: Fix igb_down hung on surprise removal")
changed igb_io_error_detected() to ignore non-fatal pcie errors in order
to avoid hung task that can happen when igb_down() is called multiple
times. This caused an issue when processing transient non-fatal errors.
igb_io_resume(), which is called after igb_io_error_detected(), assumes
that device is brought down by igb_io_error_detected() if the interface
is up. This resulted in panic with stacktrace below.
[ T3256] igb 0000:09:00.0 haeth0: igb: haeth0 NIC Link is Down
[ T292] pcieport 0000:00:1c.5: AER: Uncorrected (Non-Fatal) error received: 0000:09:00.0
[ T292] igb 0000:09:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fatal), type=Transaction Layer, (Requester ID)
[ T292] igb 0000:09:00.0: device [8086:1537] error status/mask=00004000/00000000
[ T292] igb 0000:09:00.0: [14] CmpltTO [ 200.105524,009][ T292] igb 0000:09:00.0: AER: TLP Header: 00000000 00000000 00000000 00000000
[ T292] pcieport 0000:00:1c.5: AER: broadcast error_detected message
[ T292] igb 0000:09:00.0: Non-correctable non-fatal error reported.
[ T292] pcieport 0000:00:1c.5: AER: broadcast mmio_enabled message
[ T292] pcieport 0000:00:1c.5: AER: broadcast resume message
[ T292] ------------[ cut here ]------------
[ T292] kernel BUG at net/core/dev.c:6539!
[ T292] invalid opcode: 0000 [#1] PREEMPT SMP
[ T292] RIP: 0010:napi_enable+0x37/0x40
[ T292] Call Trace:
[ T292]
- https://git.kernel.org/stable/c/0a94079e3841d00ea5abb05e3233d019a86745f6
- https://git.kernel.org/stable/c/330a699ecbfc9c26ec92c6310686da1230b4e7eb
- https://git.kernel.org/stable/c/500be93c5d53b7e2c5314292012185f0207bad0c
- https://git.kernel.org/stable/c/57c5053eaa5f9a8a99e34732e37a86615318e464
- https://git.kernel.org/stable/c/6a39c8f5c8aae74c5ab2ba466791f59ffaab0178
- https://git.kernel.org/stable/c/c92cbd283ddcf55fd85a9a9b0ba13298213f3dd7
- https://git.kernel.org/stable/c/d79af3af2f49c6aae9add3d492c04d60c1b85ce4
- https://git.kernel.org/stable/c/dca2ca65a8695d9593e2cf1b40848e073ad75413
Modified: 2024-10-24
CVE-2024-50041
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix macvlan leak by synchronizing access to mac_filter_hash This patch addresses a macvlan leak issue in the i40e driver caused by concurrent access to vsi->mac_filter_hash. The leak occurs when multiple threads attempt to modify the mac_filter_hash simultaneously, leading to inconsistent state and potential memory leaks. To fix this, we now wrap the calls to i40e_del_mac_filter() and zeroing vf->default_lan_addr.addr with spin_lock/unlock_bh(&vsi->mac_filter_hash_lock), ensuring atomic operations and preventing concurrent access. Additionally, we add lockdep_assert_held(&vsi->mac_filter_hash_lock) in i40e_add_mac_filter() to help catch similar issues in the future. Reproduction steps: 1. Spawn VFs and configure port vlan on them. 2. Trigger concurrent macvlan operations (e.g., adding and deleting portvlan and/or mac filters). 3. Observe the potential memory leak and inconsistent state in the mac_filter_hash. This synchronization ensures the integrity of the mac_filter_hash and prevents the described leak.
- https://git.kernel.org/stable/c/703c4d820b31bcadf465288d5746c53445f02a55
- https://git.kernel.org/stable/c/8831abff1bd5b6bc8224f0c0671f46fbd702b5b2
- https://git.kernel.org/stable/c/9a9747288ba0a9ad4f5c9877f18dd245770ad64e
- https://git.kernel.org/stable/c/9db6ce9e2738b05a3672aff4d42169cf3bb5a3e3
- https://git.kernel.org/stable/c/dac6c7b3d33756d6ce09f00a96ea2ecd79fae9fb
Modified: 2024-11-08
CVE-2024-50044
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: RFCOMM: FIX possible deadlock in rfcomm_sk_state_change rfcomm_sk_state_change attempts to use sock_lock so it must never be called with it locked but rfcomm_sock_ioctl always attempt to lock it causing the following trace: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Not tainted ------------------------------------------------------ syz-executor386/5093 is trying to acquire lock: ffff88807c396258 (sk_lock-AF_BLUETOOTH-BTPROTO_RFCOMM){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1671 [inline] ffff88807c396258 (sk_lock-AF_BLUETOOTH-BTPROTO_RFCOMM){+.+.}-{0:0}, at: rfcomm_sk_state_change+0x5b/0x310 net/bluetooth/rfcomm/sock.c:73 but task is already holding lock: ffff88807badfd28 (&d->lock){+.+.}-{3:3}, at: __rfcomm_dlc_close+0x226/0x6a0 net/bluetooth/rfcomm/core.c:491
- https://git.kernel.org/stable/c/08d1914293dae38350b8088980e59fbc699a72fe
- https://git.kernel.org/stable/c/38b2d5a57d125e1c17661b8308c0240c4a43b534
- https://git.kernel.org/stable/c/496b2ab0fd10f205e08909a125485fdc98843dbe
- https://git.kernel.org/stable/c/4cb9807c9b53bf1e5560420d26f319f528b50268
- https://git.kernel.org/stable/c/869c6ee62ab8f01bf2419e45326642be5c9b670a
- https://git.kernel.org/stable/c/b77b3fb12fd483cae7c28648903b1d8a6b275f01
- https://git.kernel.org/stable/c/ced98072d3511b232ae1d3347945f35f30c0e303
- https://git.kernel.org/stable/c/ef44274dae9b0a90d1a97ce8b242a3b8243a7745
Modified: 2024-11-08
CVE-2024-50045
In the Linux kernel, the following vulnerability has been resolved: netfilter: br_netfilter: fix panic with metadata_dst skb Fix a kernel panic in the br_netfilter module when sending untagged traffic via a VxLAN device. This happens during the check for fragmentation in br_nf_dev_queue_xmit. It is dependent on: 1) the br_netfilter module being loaded; 2) net.bridge.bridge-nf-call-iptables set to 1; 3) a bridge with a VxLAN (single-vxlan-device) netdevice as a bridge port; 4) untagged frames with size higher than the VxLAN MTU forwarded/flooded When forwarding the untagged packet to the VxLAN bridge port, before the netfilter hooks are called, br_handle_egress_vlan_tunnel is called and changes the skb_dst to the tunnel dst. The tunnel_dst is a metadata type of dst, i.e., skb_valid_dst(skb) is false, and metadata->dst.dev is NULL. Then in the br_netfilter hooks, in br_nf_dev_queue_xmit, there's a check for frames that needs to be fragmented: frames with higher MTU than the VxLAN device end up calling br_nf_ip_fragment, which in turns call ip_skb_dst_mtu. The ip_dst_mtu tries to use the skb_dst(skb) as if it was a valid dst with valid dst->dev, thus the crash. This case was never supported in the first place, so drop the packet instead. PING 10.0.0.2 (10.0.0.2) from 0.0.0.0 h1-eth0: 2000(2028) bytes of data. [ 176.291791] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000110 [ 176.292101] Mem abort info: [ 176.292184] ESR = 0x0000000096000004 [ 176.292322] EC = 0x25: DABT (current EL), IL = 32 bits [ 176.292530] SET = 0, FnV = 0 [ 176.292709] EA = 0, S1PTW = 0 [ 176.292862] FSC = 0x04: level 0 translation fault [ 176.293013] Data abort info: [ 176.293104] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 176.293488] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 176.293787] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 176.293995] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000043ef5000 [ 176.294166] [0000000000000110] pgd=0000000000000000, p4d=0000000000000000 [ 176.294827] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 176.295252] Modules linked in: vxlan ip6_udp_tunnel udp_tunnel veth br_netfilter bridge stp llc ipv6 crct10dif_ce [ 176.295923] CPU: 0 PID: 188 Comm: ping Not tainted 6.8.0-rc3-g5b3fbd61b9d1 #2 [ 176.296314] Hardware name: linux,dummy-virt (DT) [ 176.296535] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 176.296808] pc : br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter] [ 176.297382] lr : br_nf_dev_queue_xmit+0x2ac/0x4ec [br_netfilter] [ 176.297636] sp : ffff800080003630 [ 176.297743] x29: ffff800080003630 x28: 0000000000000008 x27: ffff6828c49ad9f8 [ 176.298093] x26: ffff6828c49ad000 x25: 0000000000000000 x24: 00000000000003e8 [ 176.298430] x23: 0000000000000000 x22: ffff6828c4960b40 x21: ffff6828c3b16d28 [ 176.298652] x20: ffff6828c3167048 x19: ffff6828c3b16d00 x18: 0000000000000014 [ 176.298926] x17: ffffb0476322f000 x16: ffffb7e164023730 x15: 0000000095744632 [ 176.299296] x14: ffff6828c3f1c880 x13: 0000000000000002 x12: ffffb7e137926a70 [ 176.299574] x11: 0000000000000001 x10: ffff6828c3f1c898 x9 : 0000000000000000 [ 176.300049] x8 : ffff6828c49bf070 x7 : 0008460f18d5f20e x6 : f20e0100bebafeca [ 176.300302] x5 : ffff6828c7f918fe x4 : ffff6828c49bf070 x3 : 0000000000000000 [ 176.300586] x2 : 0000000000000000 x1 : ffff6828c3c7ad00 x0 : ffff6828c7f918f0 [ 176.300889] Call trace: [ 176.301123] br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter] [ 176.301411] br_nf_post_routing+0x2a8/0x3e4 [br_netfilter] [ 176.301703] nf_hook_slow+0x48/0x124 [ 176.302060] br_forward_finish+0xc8/0xe8 [bridge] [ 176.302371] br_nf_hook_thresh+0x124/0x134 [br_netfilter] [ 176.302605] br_nf_forward_finish+0x118/0x22c [br_netfilter] [ 176.302824] br_nf_forward_ip.part.0+0x264/0x290 [br_netfilter] [ 176.303136] br_nf_forward+0x2b8/0x4e0 [br_netfilter] [ 176.303359] nf_hook_slow+0x48/0x124 [ 176.303 ---truncated---
- https://git.kernel.org/stable/c/3453f5839420bfbb85c86c61e49f49ffd0f041c4
- https://git.kernel.org/stable/c/75dfcb758015c97e1accd6340691fca67d363bed
- https://git.kernel.org/stable/c/78ed917133b118661e1fe62d4a85d5d428ee9568
- https://git.kernel.org/stable/c/915717e0bb9837cc5c101bc545af487bd787239e
- https://git.kernel.org/stable/c/95c0cff5a1a5d28bf623b92eb5d1a8f56ed30803
- https://git.kernel.org/stable/c/cce8419b8168f6e7eb637103a47f916f3de8bc81
- https://git.kernel.org/stable/c/f07131239a76cc10d5e82c19d91f53cb55727297
- https://git.kernel.org/stable/c/f9ff7665cd128012868098bbd07e28993e314fdb
Modified: 2024-10-24
CVE-2024-50046
In the Linux kernel, the following vulnerability has been resolved: NFSv4: Prevent NULL-pointer dereference in nfs42_complete_copies() On the node of an NFS client, some files saved in the mountpoint of the NFS server were copied to another location of the same NFS server. Accidentally, the nfs42_complete_copies() got a NULL-pointer dereference crash with the following syslog: [232064.838881] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232064.839360] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232066.588183] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058 [232066.588586] Mem abort info: [232066.588701] ESR = 0x0000000096000007 [232066.588862] EC = 0x25: DABT (current EL), IL = 32 bits [232066.589084] SET = 0, FnV = 0 [232066.589216] EA = 0, S1PTW = 0 [232066.589340] FSC = 0x07: level 3 translation fault [232066.589559] Data abort info: [232066.589683] ISV = 0, ISS = 0x00000007 [232066.589842] CM = 0, WnR = 0 [232066.589967] user pgtable: 64k pages, 48-bit VAs, pgdp=00002000956ff400 [232066.590231] [0000000000000058] pgd=08001100ae100003, p4d=08001100ae100003, pud=08001100ae100003, pmd=08001100b3c00003, pte=0000000000000000 [232066.590757] Internal error: Oops: 96000007 [#1] SMP [232066.590958] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm vhost_net vhost vhost_iotlb tap tun ipt_rpfilter xt_multiport ip_set_hash_ip ip_set_hash_net xfrm_interface xfrm6_tunnel tunnel4 tunnel6 esp4 ah4 wireguard libcurve25519_generic veth xt_addrtype xt_set nf_conntrack_netlink ip_set_hash_ipportnet ip_set_hash_ipportip ip_set_bitmap_port ip_set_hash_ipport dummy ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs iptable_filter sch_ingress nfnetlink_cttimeout vport_gre ip_gre ip_tunnel gre vport_geneve geneve vport_vxlan vxlan ip6_udp_tunnel udp_tunnel openvswitch nf_conncount dm_round_robin dm_service_time dm_multipath xt_nat xt_MASQUERADE nft_chain_nat nf_nat xt_mark xt_conntrack xt_comment nft_compat nft_counter nf_tables nfnetlink ocfs2 ocfs2_nodemanager ocfs2_stackglue iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_ssif nbd overlay 8021q garp mrp bonding tls rfkill sunrpc ext4 mbcache jbd2 [232066.591052] vfat fat cas_cache cas_disk ses enclosure scsi_transport_sas sg acpi_ipmi ipmi_si ipmi_devintf ipmi_msghandler ip_tables vfio_pci vfio_pci_core vfio_virqfd vfio_iommu_type1 vfio dm_mirror dm_region_hash dm_log dm_mod nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc fuse xfs libcrc32c ast drm_vram_helper qla2xxx drm_kms_helper syscopyarea crct10dif_ce sysfillrect ghash_ce sysimgblt sha2_ce fb_sys_fops cec sha256_arm64 sha1_ce drm_ttm_helper ttm nvme_fc igb sbsa_gwdt nvme_fabrics drm nvme_core i2c_algo_bit i40e scsi_transport_fc megaraid_sas aes_neon_bs [232066.596953] CPU: 6 PID: 4124696 Comm: 10.253.166.125- Kdump: loaded Not tainted 5.15.131-9.cl9_ocfs2.aarch64 #1 [232066.597356] Hardware name: Great Wall .\x93\x8e...RF6260 V5/GWMSSE2GL1T, BIOS T656FBE_V3.0.18 2024-01-06 [232066.597721] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [232066.598034] pc : nfs4_reclaim_open_state+0x220/0x800 [nfsv4] [232066.598327] lr : nfs4_reclaim_open_state+0x12c/0x800 [nfsv4] [232066.598595] sp : ffff8000f568fc70 [232066.598731] x29: ffff8000f568fc70 x28: 0000000000001000 x27: ffff21003db33000 [232066.599030] x26: ffff800005521ae0 x25: ffff0100f98fa3f0 x24: 0000000000000001 [232066.599319] x23: ffff800009920008 x22: ffff21003db33040 x21: ffff21003db33050 [232066.599628] x20: ffff410172fe9e40 x19: ffff410172fe9e00 x18: 0000000000000000 [232066.599914] x17: 0000000000000000 x16: 0000000000000004 x15: 0000000000000000 [232066.600195] x14: 0000000000000000 x13: ffff800008e685a8 x12: 00000000eac0c6e6 [232066.600498] x11: 00000000000000 ---truncated---
- https://git.kernel.org/stable/c/584c019baedddec3fd634053e8fb2d8836108d38
- https://git.kernel.org/stable/c/632344b9efa064ca737bfcdaaaced59fd5f18ae9
- https://git.kernel.org/stable/c/a848c29e3486189aaabd5663bc11aea50c5bd144
- https://git.kernel.org/stable/c/ef9189bb15dcbe7ed3f3515aaa6fc8bf7483960d
- https://git.kernel.org/stable/c/f892165c564e3aab272948dbb556cc20e290c55a
- https://git.kernel.org/stable/c/fca41e5fa4914d12b2136c25f9dad69520b52683
Modified: 2025-02-02
CVE-2024-50047
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in async decryption
Doing an async decryption (large read) crashes with a
slab-use-after-free way down in the crypto API.
Reproducer:
# mount.cifs -o ...,seal,esize=1 //srv/share /mnt
# dd if=/mnt/largefile of=/dev/null
...
[ 194.196391] ==================================================================
[ 194.196844] BUG: KASAN: slab-use-after-free in gf128mul_4k_lle+0xc1/0x110
[ 194.197269] Read of size 8 at addr ffff888112bd0448 by task kworker/u77:2/899
[ 194.197707]
[ 194.197818] CPU: 12 UID: 0 PID: 899 Comm: kworker/u77:2 Not tainted 6.11.0-lku-00028-gfca3ca14a17a-dirty #43
[ 194.198400] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014
[ 194.199046] Workqueue: smb3decryptd smb2_decrypt_offload [cifs]
[ 194.200032] Call Trace:
[ 194.200191]
Modified: 2024-10-24
CVE-2024-50048
In the Linux kernel, the following vulnerability has been resolved: fbcon: Fix a NULL pointer dereference issue in fbcon_putcs syzbot has found a NULL pointer dereference bug in fbcon. Here is the simplified C reproducer: struct param { uint8_t type; struct tiocl_selection ts; }; int main() { struct fb_con2fbmap con2fb; struct param param; int fd = open("/dev/fb1", 0, 0); con2fb.console = 0x19; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); param.type = 2; param.ts.xs = 0; param.ts.ys = 0; param.ts.xe = 0; param.ts.ye = 0; param.ts.sel_mode = 0; int fd1 = open("/dev/tty1", O_RDWR, 0); ioctl(fd1, TIOCLINUX, ¶m); con2fb.console = 1; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); return 0; } After calling ioctl(fd1, TIOCLINUX, ¶m), the subsequent ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb) causes the kernel to follow a different execution path: set_con2fb_map -> con2fb_init_display -> fbcon_set_disp -> redraw_screen -> hide_cursor -> clear_selection -> highlight -> invert_screen -> do_update_region -> fbcon_putcs -> ops->putcs Since ops->putcs is a NULL pointer, this leads to a kernel panic. To prevent this, we need to call set_blitting_type() within set_con2fb_map() to properly initialize ops->putcs.
Modified: 2024-10-24
CVE-2024-50049
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before dereferencing se [WHAT & HOW] se is null checked previously in the same function, indicating it might be null; therefore, it must be checked when used again. This fixes 1 FORWARD_NULL issue reported by Coverity.
- https://git.kernel.org/stable/c/65b2d49e55fe13ae56da3a7685bdccadca31134a
- https://git.kernel.org/stable/c/97a79933fb08a002ba9400d1a7a5df707ecdb896
- https://git.kernel.org/stable/c/a9b4fd1946678fa0e069e442f3c5a7d3fa446fac
- https://git.kernel.org/stable/c/c643ef59390e49f1dfab35e8ea65f5db5e527d64
- https://git.kernel.org/stable/c/f4149eec960110ffd5bcb161075dd9f1d7773075
- https://git.kernel.org/stable/c/ff599ef6970ee000fa5bc38d02fa5ff5f3fc7575
Modified: 2025-03-13
CVE-2024-50055
In the Linux kernel, the following vulnerability has been resolved: driver core: bus: Fix double free in driver API bus_register() For bus_register(), any error which happens after kset_register() will cause that @priv are freed twice, fixed by setting @priv with NULL after the first free.
- https://git.kernel.org/stable/c/4797953712214ea57a437443bb0ad6d1e0646d70
- https://git.kernel.org/stable/c/5be4bc1c73ca389a96d418a52054d897c6fe6d21
- https://git.kernel.org/stable/c/87bc3cb23c56de2c5e14a58d87cf953e7a2508f8
- https://git.kernel.org/stable/c/9ce15f68abedfae7ae0a35e95895aeddfd0f0c6a
- https://git.kernel.org/stable/c/bfa54a793ba77ef696755b66f3ac4ed00c7d1248
- https://git.kernel.org/stable/c/d885c464c25018b81a6b58f5d548fc2e3ef87dd1
- https://git.kernel.org/stable/c/fc1f391a71a3ee88291e205cffd673fe24d99266
Modified: 2024-10-24
CVE-2024-50057
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Free IRQ only if it was requested before In polling mode, if no IRQ was requested there is no need to free it. Call devm_free_irq() only if client->irq is set. This fixes the warning caused by the tps6598x module removal: WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c ... ... Call trace: devm_free_irq+0x80/0x8c tps6598x_remove+0x28/0x88 [tps6598x] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x50/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x] __arm64_sys_delete_module+0x184/0x264 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc8/0xe8 do_el0_svc+0x20/0x2c el0_svc+0x28/0x98 el0t_64_sync_handler+0x13c/0x158 el0t_64_sync+0x190/0x194
Modified: 2024-11-08
CVE-2024-50058
In the Linux kernel, the following vulnerability has been resolved: serial: protect uart_port_dtr_rts() in uart_shutdown() too Commit af224ca2df29 (serial: core: Prevent unsafe uart port access, part 3) added few uport == NULL checks. It added one to uart_shutdown(), so the commit assumes, uport can be NULL in there. But right after that protection, there is an unprotected "uart_port_dtr_rts(uport, false);" call. That is invoked only if HUPCL is set, so I assume that is the reason why we do not see lots of these reports. Or it cannot be NULL at this point at all for some reason :P. Until the above is investigated, stay on the safe side and move this dereference to the if too. I got this inconsistency from Coverity under CID 1585130. Thanks.
- https://git.kernel.org/stable/c/2fe399bb8efd0d325ab1138cf8e3ecf23a39e96d
- https://git.kernel.org/stable/c/399927f0f875b93f3d5a0336d382ba48b8671eb2
- https://git.kernel.org/stable/c/602babaa84d627923713acaf5f7e9a4369e77473
- https://git.kernel.org/stable/c/76ed24a34223bb2c6b6162e1d8389ec4e602a290
- https://git.kernel.org/stable/c/d7b5876a6e74cdf8468a478be6b23f2f5464ac7a
- https://git.kernel.org/stable/c/e418d91195d29d5f9c9685ff309b92b04b41dc40
Modified: 2024-11-08
CVE-2024-50059
In the Linux kernel, the following vulnerability has been resolved: ntb: ntb_hw_switchtec: Fix use after free vulnerability in switchtec_ntb_remove due to race condition In the switchtec_ntb_add function, it can call switchtec_ntb_init_sndev function, then &sndev->check_link_status_work is bound with check_link_status_work. switchtec_ntb_link_notification may be called to start the work. If we remove the module which will call switchtec_ntb_remove to make cleanup, it will free sndev through kfree(sndev), while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | check_link_status_work switchtec_ntb_remove | kfree(sndev); | | if (sndev->link_force_down) | // use sndev Fix it by ensuring that the work is canceled before proceeding with the cleanup in switchtec_ntb_remove.
- https://git.kernel.org/stable/c/177925d9c8715a897bb79eca62628862213ba956
- https://git.kernel.org/stable/c/3ae45be8492460a35b5aebf6acac1f1d32708946
- https://git.kernel.org/stable/c/5126d8f5567f49b52e21fca320eaa97977055099
- https://git.kernel.org/stable/c/92728fceefdaa2a0a3aae675f86193b006eeaa43
- https://git.kernel.org/stable/c/b650189687822b705711f0567a65a164a314d8df
- https://git.kernel.org/stable/c/e51aded92d42784313ba16c12f4f88cc4f973bbb
- https://git.kernel.org/stable/c/fa840ba4bd9f3bad7f104e5b32028ee73af8b3dd
Modified: 2024-11-20
CVE-2024-50060
In the Linux kernel, the following vulnerability has been resolved: io_uring: check if we need to reschedule during overflow flush In terms of normal application usage, this list will always be empty. And if an application does overflow a bit, it'll have a few entries. However, nothing obviously prevents syzbot from running a test case that generates a ton of overflow entries, and then flushing them can take quite a while. Check for needing to reschedule while flushing, and drop our locks and do so if necessary. There's no state to maintain here as overflows always prune from head-of-list, hence it's fine to drop and reacquire the locks at the end of the loop.
Modified: 2025-02-21
CVE-2024-50061
In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.
Modified: 2024-10-24
CVE-2024-50062
In the Linux kernel, the following vulnerability has been resolved: RDMA/rtrs-srv: Avoid null pointer deref during path establishment For RTRS path establishment, RTRS client initiates and completes con_num of connections. After establishing all its connections, the information is exchanged between the client and server through the info_req message. During this exchange, it is essential that all connections have been established, and the state of the RTRS srv path is CONNECTED. So add these sanity checks, to make sure we detect and abort process in error scenarios to avoid null pointer deref.
- https://git.kernel.org/stable/c/394b2f4d5e014820455af3eb5859eb328eaafcfd
- https://git.kernel.org/stable/c/b5d4076664465487a9a3d226756995b12fb73d71
- https://git.kernel.org/stable/c/b720792d7e8515bc695752e0ed5884e2ea34d12a
- https://git.kernel.org/stable/c/ccb8e44ae3e2391235f80ffc6be59bec6b889ead
- https://git.kernel.org/stable/c/d0e62bf7b575fbfe591f6f570e7595dd60a2f5eb
Modified: 2024-11-22
CVE-2024-50063
In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.
Modified: 2024-10-24
CVE-2024-50064
In the Linux kernel, the following vulnerability has been resolved: zram: free secondary algorithms names We need to kfree() secondary algorithms names when reset zram device that had multi-streams, otherwise we leak memory. [senozhatsky@chromium.org: kfree(NULL) is legal] Link: https://lkml.kernel.org/r/20240917013021.868769-1-senozhatsky@chromium.org
Modified: 2024-11-20
CVE-2024-50065
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Change to non-blocking allocation in ntfs_d_hash d_hash is done while under "rcu-walk" and should not sleep. __get_name() allocates using GFP_KERNEL, having the possibility to sleep when under memory pressure. Change the allocation to GFP_NOWAIT.
Modified: 2024-11-08
CVE-2024-50093
In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: int340x: processor: Fix warning during module unload
The processor_thermal driver uses pcim_device_enable() to enable a PCI
device, which means the device will be automatically disabled on driver
detach. Thus there is no need to call pci_disable_device() again on it.
With recent PCI device resource management improvements, e.g. commit
f748a07a0b64 ("PCI: Remove legacy pcim_release()"), this problem is
exposed and triggers the warining below.
[ 224.010735] proc_thermal_pci 0000:00:04.0: disabling already-disabled device
[ 224.010747] WARNING: CPU: 8 PID: 4442 at drivers/pci/pci.c:2250 pci_disable_device+0xe5/0x100
...
[ 224.010844] Call Trace:
[ 224.010845]
- https://git.kernel.org/stable/c/434525a864136c928b54fd2512b4c0167c207463
- https://git.kernel.org/stable/c/8403021b6f32d68a7e3a6b8428ecaf5c153a9974
- https://git.kernel.org/stable/c/99ca0b57e49fb73624eede1c4396d9e3d10ccf14
- https://git.kernel.org/stable/c/b4ab78f4adeaf6c98be5d375518dd4fb666eac5e
- https://git.kernel.org/stable/c/dd64ea03375618684477f946be4f5e253f8676c2
Modified: 2024-11-12
CVE-2024-50095
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mad: Improve handling of timed out WRs of mad agent
Current timeout handler of mad agent acquires/releases mad_agent_priv
lock for every timed out WRs. This causes heavy locking contention
when higher no. of WRs are to be handled inside timeout handler.
This leads to softlockup with below trace in some use cases where
rdma-cm path is used to establish connection between peer nodes
Trace:
-----
BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767]
CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE
------- --- 5.14.0-427.13.1.el9_4.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019
Workqueue: ib_mad1 timeout_sends [ib_core]
RIP: 0010:__do_softirq+0x78/0x2ac
RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246
RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f
RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b
RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000
R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040
FS: 0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
- https://git.kernel.org/stable/c/2a777679b8ccd09a9a65ea0716ef10365179caac
- https://git.kernel.org/stable/c/3e799fa463508abe7a738ce5d0f62a8dfd05262a
- https://git.kernel.org/stable/c/7022a517bf1ca37ef5a474365bcc5eafd345a13a
- https://git.kernel.org/stable/c/713adaf0ecfc49405f6e5d9e409d984f628de818
- https://git.kernel.org/stable/c/a195a42dd25ca4f12489687065d00be64939409f
- https://git.kernel.org/stable/c/e80eadb3604a92d2d086e956b8b2692b699d4d0a
Modified: 2024-11-12
CVE-2024-50096
In the Linux kernel, the following vulnerability has been resolved: nouveau/dmem: Fix vulnerability in migrate_to_ram upon copy error The `nouveau_dmem_copy_one` function ensures that the copy push command is sent to the device firmware but does not track whether it was executed successfully. In the case of a copy error (e.g., firmware or hardware failure), the copy push command will be sent via the firmware channel, and `nouveau_dmem_copy_one` will likely report success, leading to the `migrate_to_ram` function returning a dirty HIGH_USER page to the user. This can result in a security vulnerability, as a HIGH_USER page that may contain sensitive or corrupted data could be returned to the user. To prevent this vulnerability, we allocate a zero page. Thus, in case of an error, a non-dirty (zero) page will be returned to the user.
- https://git.kernel.org/stable/c/614bfb2050982d23d53d0d51c4079dba0437c883
- https://git.kernel.org/stable/c/697e3ddcf1f8b68bd531fc34eead27c000bdf3e1
- https://git.kernel.org/stable/c/73f75d2b5aee5a735cf64b8ab4543d5c20dbbdd9
- https://git.kernel.org/stable/c/835745a377a4519decd1a36d6b926e369b3033e2
- https://git.kernel.org/stable/c/8c3de9282dde21ce3c1bf1bde3166a4510547aa9
- https://git.kernel.org/stable/c/ab4d113b6718b076046018292f821d5aa4b844f8
- https://git.kernel.org/stable/c/fd9bb7e996bab9b9049fffe3f3d3b50dee191d27
Modified: 2024-11-12
CVE-2024-50097
In the Linux kernel, the following vulnerability has been resolved: net: fec: don't save PTP state if PTP is unsupported Some platforms (such as i.MX25 and i.MX27) do not support PTP, so on these platforms fec_ptp_init() is not called and the related members in fep are not initialized. However, fec_ptp_save_state() is called unconditionally, which causes the kernel to panic. Therefore, add a condition so that fec_ptp_save_state() is not called if PTP is not supported.
Modified: 2024-11-29
CVE-2024-50180
In the Linux kernel, the following vulnerability has been resolved: fbdev: sisfb: Fix strbuf array overflow The values of the variables xres and yres are placed in strbuf. These variables are obtained from strbuf1. The strbuf1 array contains digit characters and a space if the array contains non-digit characters. Then, when executing sprintf(strbuf, "%ux%ux8", xres, yres); more than 16 bytes will be written to strbuf. It is suggested to increase the size of the strbuf array to 24. Found by Linux Verification Center (linuxtesting.org) with SVACE.
- https://git.kernel.org/stable/c/11c0d49093b82f6c547fd419c41a982d26bdf5ef
- https://git.kernel.org/stable/c/252f147b1826cbb30ae0304cf86b66d3bb12b743
- https://git.kernel.org/stable/c/41cf6f26abe4f491b694c54bd1aa2530369b7510
- https://git.kernel.org/stable/c/433c84c8495008922534c5cafdae6ff970fb3241
- https://git.kernel.org/stable/c/57c4f4db0a194416da237fd09dad9527e00cb587
- https://git.kernel.org/stable/c/688872c4ea4a528cd6a057d545c83506b533ee1f
- https://git.kernel.org/stable/c/889304120ecb2ca30674d89cd4ef15990b6a571c
- https://git.kernel.org/stable/c/9cf14f5a2746c19455ce9cb44341b5527b5e19c3
Modified: 2025-03-03
CVE-2024-50181
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
Modified: 2024-11-29
CVE-2024-50182
In the Linux kernel, the following vulnerability has been resolved: secretmem: disable memfd_secret() if arch cannot set direct map Return -ENOSYS from memfd_secret() syscall if !can_set_direct_map(). This is the case for example on some arm64 configurations, where marking 4k PTEs in the direct map not present can only be done if the direct map is set up at 4k granularity in the first place (as ARM's break-before-make semantics do not easily allow breaking apart large/gigantic pages). More precisely, on arm64 systems with !can_set_direct_map(), set_direct_map_invalid_noflush() is a no-op, however it returns success (0) instead of an error. This means that memfd_secret will seemingly "work" (e.g. syscall succeeds, you can mmap the fd and fault in pages), but it does not actually achieve its goal of removing its memory from the direct map. Note that with this patch, memfd_secret() will start erroring on systems where can_set_direct_map() returns false (arm64 with CONFIG_RODATA_FULL_DEFAULT_ENABLED=n, CONFIG_DEBUG_PAGEALLOC=n and CONFIG_KFENCE=n), but that still seems better than the current silent failure. Since CONFIG_RODATA_FULL_DEFAULT_ENABLED defaults to 'y', most arm64 systems actually have a working memfd_secret() and aren't be affected. From going through the iterations of the original memfd_secret patch series, it seems that disabling the syscall in these scenarios was the intended behavior [1] (preferred over having set_direct_map_invalid_noflush return an error as that would result in SIGBUSes at page-fault time), however the check for it got dropped between v16 [2] and v17 [3], when secretmem moved away from CMA allocations. [1]: https://lore.kernel.org/lkml/20201124164930.GK8537@kernel.org/ [2]: https://lore.kernel.org/lkml/20210121122723.3446-11-rppt@kernel.org/#t [3]: https://lore.kernel.org/lkml/20201125092208.12544-10-rppt@kernel.org/
- https://git.kernel.org/stable/c/532b53cebe58f34ce1c0f34d866f5c0e335c53c6
- https://git.kernel.org/stable/c/5ea0b7af38754d2b45ead9257bca47e84662e926
- https://git.kernel.org/stable/c/757786abe4547eb3d9d0e8350a63bdb0f9824af2
- https://git.kernel.org/stable/c/7caf966390e6e4ebf42775df54e7ee1f280ce677
- https://git.kernel.org/stable/c/d0ae6ffa1aeb297aef89f49cfb894a83c329ebad
Modified: 2024-12-10
CVE-2024-50183
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Ensure DA_ID handling completion before deleting an NPIV instance Deleting an NPIV instance requires all fabric ndlps to be released before an NPIV's resources can be torn down. Failure to release fabric ndlps beforehand opens kref imbalance race conditions. Fix by forcing the DA_ID to complete synchronously with usage of wait_queue.
Modified: 2024-12-10
CVE-2024-50184
In the Linux kernel, the following vulnerability has been resolved: virtio_pmem: Check device status before requesting flush If a pmem device is in a bad status, the driver side could wait for host ack forever in virtio_pmem_flush(), causing the system to hang. So add a status check in the beginning of virtio_pmem_flush() to return early if the device is not activated.
- https://git.kernel.org/stable/c/4ce662fe4be6fbc2595d9ef4888b2b6e778c99ed
- https://git.kernel.org/stable/c/59ac565c6277d4be6661e81ea6a7f3ca2c5e4e36
- https://git.kernel.org/stable/c/6a5ca0ab94e13a1474bf7ad8437a975c2193618f
- https://git.kernel.org/stable/c/9a2bc9b6f929a2ce1ebe4d1a796ddab37568c5b4
- https://git.kernel.org/stable/c/b01793cc63dd39c8f12b9a3d8dc115fbebb19e2a
- https://git.kernel.org/stable/c/ce7a3a62cc533c922072f328fd2ea2fd7cb893d4
- https://git.kernel.org/stable/c/e25fbcd97cf52c3c9824d44b5c56c19673c3dd50
Modified: 2024-12-10
CVE-2024-50185
In the Linux kernel, the following vulnerability has been resolved: mptcp: handle consistently DSS corruption Bugged peer implementation can send corrupted DSS options, consistently hitting a few warning in the data path. Use DEBUG_NET assertions, to avoid the splat on some builds and handle consistently the error, dumping related MIBs and performing fallback and/or reset according to the subflow type.
- https://git.kernel.org/stable/c/12c1676d598e3b8dd92a033b623b792cc2ea1ec5
- https://git.kernel.org/stable/c/35668f8ec84f6c944676e48ecc6bbc5fc8e6fe25
- https://git.kernel.org/stable/c/8bfd391bde685df7289b928ce8876a3583be4bfb
- https://git.kernel.org/stable/c/b8be15d1ae7ea4eedd547c3b3141f592fbddcd30
- https://git.kernel.org/stable/c/e32d262c89e2b22cb0640223f953b548617ed8a6
- https://git.kernel.org/stable/c/fde99e972b8f88cebe619241d7aa43d288ef666a
Modified: 2024-12-10
CVE-2024-50186
In the Linux kernel, the following vulnerability has been resolved: net: explicitly clear the sk pointer, when pf->create fails We have recently noticed the exact same KASAN splat as in commit 6cd4a78d962b ("net: do not leave a dangling sk pointer, when socket creation fails"). The problem is that commit did not fully address the problem, as some pf->create implementations do not use sk_common_release in their error paths. For example, we can use the same reproducer as in the above commit, but changing ping to arping. arping uses AF_PACKET socket and if packet_create fails, it will just sk_free the allocated sk object. While we could chase all the pf->create implementations and make sure they NULL the freed sk object on error from the socket, we can't guarantee future protocols will not make the same mistake. So it is easier to just explicitly NULL the sk pointer upon return from pf->create in __sock_create. We do know that pf->create always releases the allocated sk object on error, so if the pointer is not NULL, it is definitely dangling.
- https://git.kernel.org/stable/c/563e6892e21d6ecabdf62103fc4e7b326d212334
- https://git.kernel.org/stable/c/631083143315d1b192bd7d915b967b37819e88ea
- https://git.kernel.org/stable/c/8e1b72fd74bf9da3b099d09857f4e7f114f38e12
- https://git.kernel.org/stable/c/b7d22a79ff4e962b8af5ffe623abd1d6c179eb9f
- https://git.kernel.org/stable/c/daf462ff3cde6ecf22b98d9ae770232c10d28de2
Modified: 2024-11-28
CVE-2024-50187
In the Linux kernel, the following vulnerability has been resolved: drm/vc4: Stop the active perfmon before being destroyed Upon closing the file descriptor, the active performance monitor is not stopped. Although all perfmons are destroyed in `vc4_perfmon_close_file()`, the active performance monitor's pointer (`vc4->active_perfmon`) is still retained. If we open a new file descriptor and submit a few jobs with performance monitors, the driver will attempt to stop the active performance monitor using the stale pointer in `vc4->active_perfmon`. However, this pointer is no longer valid because the previous process has already terminated, and all performance monitors associated with it have been destroyed and freed. To fix this, when the active performance monitor belongs to a given process, explicitly stop it before destroying and freeing it.
Modified: 2024-11-27
CVE-2024-50188
In the Linux kernel, the following vulnerability has been resolved: net: phy: dp83869: fix memory corruption when enabling fiber When configuring the fiber port, the DP83869 PHY driver incorrectly calls linkmode_set_bit() with a bit mask (1 << 10) rather than a bit number (10). This corrupts some other memory location -- in case of arm64 the priv pointer in the same structure. Since the advertising flags are updated from supported at the end of the function the incorrect line isn't needed at all and can be removed.
- https://git.kernel.org/stable/c/21b5af7f0c99b3bf1fd02016e6708b613acbcaf4
- https://git.kernel.org/stable/c/9ca634676ff66e1d616259e136f96f96b2a1759a
- https://git.kernel.org/stable/c/a842e443ca8184f2dc82ab307b43a8b38defd6a5
- https://git.kernel.org/stable/c/ad0d76b8ee5db063791cc2e7a30ffc9852ac37c4
- https://git.kernel.org/stable/c/c1944b4253649fc6f2fb53e7d6302eb414d2182c
- https://git.kernel.org/stable/c/e3f2de32dae35bc7d173377dc97b5bc9fcd9fc84
Modified: 2024-11-27
CVE-2024-50189
In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: Switch to device-managed dmam_alloc_coherent() Using the device-managed version allows to simplify clean-up in probe() error path. Additionally, this device-managed ensures proper cleanup, which helps to resolve memory errors, page faults, btrfs going read-only, and btrfs disk corruption.
- https://git.kernel.org/stable/c/1c3b4c90479aa0375ec98fe1a802993ff96a5f47
- https://git.kernel.org/stable/c/4cd9c5a0fcadc39a05c978a01e15e0d1edc4be93
- https://git.kernel.org/stable/c/8c6ad37e5882073cab84901a31da9cb22f316276
- https://git.kernel.org/stable/c/9dfee956f53eea96d93ef1e13ab4ce020f4c58b3
- https://git.kernel.org/stable/c/c56f9ecb7fb6a3a90079c19eb4c8daf3bbf514b3
Modified: 2024-12-11
CVE-2024-50191
In the Linux kernel, the following vulnerability has been resolved: ext4: don't set SB_RDONLY after filesystem errors When the filesystem is mounted with errors=remount-ro, we were setting SB_RDONLY flag to stop all filesystem modifications. We knew this misses proper locking (sb->s_umount) and does not go through proper filesystem remount procedure but it has been the way this worked since early ext2 days and it was good enough for catastrophic situation damage mitigation. Recently, syzbot has found a way (see link) to trigger warnings in filesystem freezing because the code got confused by SB_RDONLY changing under its hands. Since these days we set EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all filesystem modifications, modifying SB_RDONLY shouldn't be needed. So stop doing that.
- https://git.kernel.org/stable/c/4061e07f040a091f694f461b86a26cf95ae66439
- https://git.kernel.org/stable/c/58c0648e4c773f5b54f0cb63bc8c7c6bf52719a9
- https://git.kernel.org/stable/c/d3476f3dad4ad68ae5f6b008ea6591d1520da5d8
- https://git.kernel.org/stable/c/ee77c388469116565e009eaa704a60bc78489e09
- https://git.kernel.org/stable/c/fbb177bc1d6487cd3e9b50ae0be2781b7297980d