ALT-BU-2024-11970-1
Branch sisyphus update bulletin.
Closed bugs
Проблемы при обновлении
Closed bugs
Неверные права к файлу конфигурации
Closed bugs
Не стартует zabbix-java-gateway с java-17-openjdk
Package kernel-image-mp updated to version 6.10.4-alt1 for branch sisyphus in task 356654.
Closed vulnerabilities
Modified: 2024-08-20
CVE-2023-52889
In the Linux kernel, the following vulnerability has been resolved:
apparmor: Fix null pointer deref when receiving skb during sock creation
The panic below is observed when receiving ICMP packets with secmark set
while an ICMP raw socket is being created. SK_CTX(sk)->label is updated
in apparmor_socket_post_create(), but the packet is delivered to the
socket before that, causing the null pointer dereference.
Drop the packet if label context is not set.
BUG: kernel NULL pointer dereference, address: 000000000000004c
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 407 Comm: a.out Not tainted 6.4.12-arch1-1 #1 3e6fa2753a2d75925c34ecb78e22e85a65d083df
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/28/2020
RIP: 0010:aa_label_next_confined+0xb/0x40
Code: 00 00 48 89 ef e8 d5 25 0c 00 e9 66 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 89 f0 <8b> 77 4c 39 c6 7e 1f 48 63 d0 48 8d 14 d7 eb 0b 83 c0 01 48 83 c2
RSP: 0018:ffffa92940003b08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000000000000e
RDX: ffffa92940003be8 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff8b57471e7800 R08: ffff8b574c642400 R09: 0000000000000002
R10: ffffffffbd820eeb R11: ffffffffbeb7ff00 R12: ffff8b574c642400
R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000000
FS: 00007fb092ea7640(0000) GS:ffff8b577bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000004c CR3: 00000001020f2005 CR4: 00000000007706f0
PKRU: 55555554
Call Trace:
- https://git.kernel.org/stable/c/0abe35bc48d4ec80424b1f4b3560c0e082cbd5c1
- https://git.kernel.org/stable/c/290a6b88e8c19b6636ed1acc733d1458206f7697
- https://git.kernel.org/stable/c/347dcb84a4874b5fb375092c08d8cc4069b94f81
- https://git.kernel.org/stable/c/46c17ead5b7389e22e7dc9903fd0ba865d05bda2
- https://git.kernel.org/stable/c/6c920754f62cefc63fccdc38a062c7c3452e2961
- https://git.kernel.org/stable/c/ead2ad1d9f045f26fdce3ef1644913b3a6cd38f2
- https://git.kernel.org/stable/c/fce09ea314505a52f2436397608fa0a5d0934fb1
Modified: 2024-08-14
CVE-2024-42258
In the Linux kernel, the following vulnerability has been resolved: mm: huge_memory: use !CONFIG_64BIT to relax huge page alignment on 32 bit machines Yves-Alexis Perez reported commit 4ef9ad19e176 ("mm: huge_memory: don't force huge page alignment on 32 bit") didn't work for x86_32 [1]. It is because x86_32 uses CONFIG_X86_32 instead of CONFIG_32BIT. !CONFIG_64BIT should cover all 32 bit machines. [1] https://lore.kernel.org/linux-mm/CAHbLzkr1LwH3pcTgM+aGQ31ip2bKqiqEQ8=FQB+t2c3dhNKNHA@mail.gmail.com/
Modified: 2024-08-19
CVE-2024-42262
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Fix potential memory leak in the performance extension If fetching of userspace memory fails during the main loop, all drm sync objs looked up until that point will be leaked because of the missing drm_syncobj_put. Fix it by exporting and using a common cleanup helper. (cherry picked from commit 484de39fa5f5b7bd0c5f2e2c5265167250ef7501)
Modified: 2024-08-19
CVE-2024-42263
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Fix potential memory leak in the timestamp extension If fetching of userspace memory fails during the main loop, all drm sync objs looked up until that point will be leaked because of the missing drm_syncobj_put. Fix it by exporting and using a common cleanup helper. (cherry picked from commit 753ce4fea62182c77e1691ab4f9022008f25b62e)
Modified: 2024-08-19
CVE-2024-42268
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix missing lock on sync reset reload
On sync reset reload work, when remote host updates devlink on reload
actions performed on that host, it misses taking devlink lock before
calling devlink_remote_reload_actions_performed() which results in
triggering lock assert like the following:
WARNING: CPU: 4 PID: 1164 at net/devlink/core.c:261 devl_assert_locked+0x3e/0x50
…
CPU: 4 PID: 1164 Comm: kworker/u96:6 Tainted: G S W 6.10.0-rc2+ #116
Hardware name: Supermicro SYS-2028TP-DECTR/X10DRT-PT, BIOS 2.0 12/18/2015
Workqueue: mlx5_fw_reset_events mlx5_sync_reset_reload_work [mlx5_core]
RIP: 0010:devl_assert_locked+0x3e/0x50
…
Call Trace:
Modified: 2024-08-19
CVE-2024-42269
In the Linux kernel, the following vulnerability has been resolved: netfilter: iptables: Fix potential null-ptr-deref in ip6table_nat_table_init(). ip6table_nat_table_init() accesses net->gen->ptr[ip6table_nat_net_ops.id], but the function is exposed to user space before the entry is allocated via register_pernet_subsys(). Let's call register_pernet_subsys() before xt_register_template().
- https://git.kernel.org/stable/c/419ee6274c5153b89c4393c1946faa4c3cad4f9e
- https://git.kernel.org/stable/c/87dba44e9471b79b255d0736858a897332db9226
- https://git.kernel.org/stable/c/91b6df6611b7edb28676c4f63f90c56c30d3e601
- https://git.kernel.org/stable/c/c22921df777de5606f1047b1345b8d22ef1c0b34
- https://git.kernel.org/stable/c/e85b9b6a87be4cb3710082038b677e97f2389003
Modified: 2024-08-19
CVE-2024-42270
In the Linux kernel, the following vulnerability has been resolved:
netfilter: iptables: Fix null-ptr-deref in iptable_nat_table_init().
We had a report that iptables-restore sometimes triggered null-ptr-deref
at boot time. [0]
The problem is that iptable_nat_table_init() is exposed to user space
before the kernel fully initialises netns.
In the small race window, a user could call iptable_nat_table_init()
that accesses net_generic(net, iptable_nat_net_id), which is available
only after registering iptable_nat_net_ops.
Let's call register_pernet_subsys() before xt_register_template().
[0]:
bpfilter: Loaded bpfilter_umh pid 11702
Started bpfilter
BUG: kernel NULL pointer dereference, address: 0000000000000013
PF: supervisor write access in kernel mode
PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
PREEMPT SMP NOPTI
CPU: 2 PID: 11879 Comm: iptables-restor Not tainted 6.1.92-99.174.amzn2023.x86_64 #1
Hardware name: Amazon EC2 c6i.4xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat
Code: 10 4c 89 f6 48 89 ef e8 0b 19 bb ff 41 89 c4 85 c0 75 38 41 83 c7 01 49 83 c6 28 41 83 ff 04 75 dc 48 8b 44 24 08 48 8b 0c 24 <48> 89 08 4c 89 ef e8 a2 3b a2 cf 48 83 c4 10 44 89 e0 5b 5d 41 5c
RSP: 0018:ffffbef902843cd0 EFLAGS: 00010246
RAX: 0000000000000013 RBX: ffff9f4b052caa20 RCX: ffff9f4b20988d80
RDX: 0000000000000000 RSI: 0000000000000064 RDI: ffffffffc04201c0
RBP: ffff9f4b29394000 R08: ffff9f4b07f77258 R09: ffff9f4b07f77240
R10: 0000000000000000 R11: ffff9f4b09635388 R12: 0000000000000000
R13: ffff9f4b1a3c6c00 R14: ffff9f4b20988e20 R15: 0000000000000004
FS: 00007f6284340000(0000) GS:ffff9f51fe280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000013 CR3: 00000001d10a6005 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
- https://git.kernel.org/stable/c/08ed888b69a22647153fe2bec55b7cd0a46102cc
- https://git.kernel.org/stable/c/5830aa863981d43560748aa93589c0695191d95d
- https://git.kernel.org/stable/c/70014b73d7539fcbb6b4ff5f37368d7241d8e626
- https://git.kernel.org/stable/c/95590a4929027769af35b153645c0ab6fd22b29b
- https://git.kernel.org/stable/c/b98ddb65fa1674b0e6b52de8af9103b63f51b643
Modified: 2024-08-19
CVE-2024-42271
In the Linux kernel, the following vulnerability has been resolved: net/iucv: fix use after free in iucv_sock_close() iucv_sever_path() is called from process context and from bh context. iucv->path is used as indicator whether somebody else is taking care of severing the path (or it is already removed / never existed). This needs to be done with atomic compare and swap, otherwise there is a small window where iucv_sock_close() will try to work with a path that has already been severed and freed by iucv_callback_connrej() called by iucv_tasklet_fn(). Example: [452744.123844] Call Trace: [452744.123845] ([<0000001e87f03880>] 0x1e87f03880) [452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138 [452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv] [452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv] [452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv] [452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8 [452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48 [452744.124820] [<00000000d5421642>] __fput+0xba/0x268 [452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0 [452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90 [452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8 [452744.125319] Last Breaking-Event-Address: [452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138 [452744.125324] [452744.125325] Kernel panic - not syncing: Fatal exception in interrupt Note that bh_lock_sock() is not serializing the tasklet context against process context, because the check for sock_owned_by_user() and corresponding handling is missing. Ideas for a future clean-up patch: A) Correct usage of bh_lock_sock() in tasklet context, as described in Re-enqueue, if needed. This may require adding return values to the tasklet functions and thus changes to all users of iucv. B) Change iucv tasklet into worker and use only lock_sock() in af_iucv.
- https://git.kernel.org/stable/c/01437282fd3904810603f3dc98d2cac6b8b6fc84
- https://git.kernel.org/stable/c/37652fbef9809411cea55ea5fa1a170e299efcd0
- https://git.kernel.org/stable/c/69620522c48ce8215e5eb55ffbab8cafee8f407d
- https://git.kernel.org/stable/c/84f40b46787ecb67c7ad08a5bb1376141fa10c01
- https://git.kernel.org/stable/c/8b424c9e44111c5a76f41c6b741f8d4c4179d876
- https://git.kernel.org/stable/c/ac758e1f663fe9bc64f6b47212a2aa18697524f5
- https://git.kernel.org/stable/c/c65f72eec60a34ace031426e04e9aff8e5f04895
- https://git.kernel.org/stable/c/f558120cd709682b739207b48cf7479fd9568431
Modified: 2024-08-19
CVE-2024-42283
In the Linux kernel, the following vulnerability has been resolved: net: nexthop: Initialize all fields in dumped nexthops struct nexthop_grp contains two reserved fields that are not initialized by nla_put_nh_group(), and carry garbage. This can be observed e.g. with strace (edited for clarity): # ip nexthop add id 1 dev lo # ip nexthop add id 101 group 1 # strace -e recvmsg ip nexthop get id 101 ... recvmsg(... [{nla_len=12, nla_type=NHA_GROUP}, [{id=1, weight=0, resvd1=0x69, resvd2=0x67}]] ...) = 52 The fields are reserved and therefore not currently used. But as they are, they leak kernel memory, and the fact they are not just zero complicates repurposing of the fields for new ends. Initialize the full structure.
- https://git.kernel.org/stable/c/1377de719652d868f5317ba8398b7e74c5f0430b
- https://git.kernel.org/stable/c/5cc4d71dda2dd4f1520f40e634a527022e48ccd8
- https://git.kernel.org/stable/c/6d745cd0e9720282cd291d36b9db528aea18add2
- https://git.kernel.org/stable/c/7704460acd7f5d35eb07c52500987dc9b95313fb
- https://git.kernel.org/stable/c/9e8f558a3afe99ce51a642ce0d3637ddc2b5d5d0
- https://git.kernel.org/stable/c/a13d3864b76ac87085ec530b2ff8e37482a63a96
- https://git.kernel.org/stable/c/fd06cb4a5fc7bda3dea31712618a62af72a1c6cb
Modified: 2024-08-19
CVE-2024-42284
In the Linux kernel, the following vulnerability has been resolved: tipc: Return non-zero value from tipc_udp_addr2str() on error tipc_udp_addr2str() should return non-zero value if the UDP media address is invalid. Otherwise, a buffer overflow access can occur in tipc_media_addr_printf(). Fix this by returning 1 on an invalid UDP media address.
- https://git.kernel.org/stable/c/253405541be2f15ffebdeac2f4cf4b7e9144d12f
- https://git.kernel.org/stable/c/2abe350db1aa599eeebc6892237d0bce0f1de62a
- https://git.kernel.org/stable/c/5eea127675450583680c8170358bcba43227bd69
- https://git.kernel.org/stable/c/728734352743a78b4c5a7285b282127696a4a813
- https://git.kernel.org/stable/c/76ddf84a52f0d8ec3f5db6ccce08faf202a17d28
- https://git.kernel.org/stable/c/7ec3335dd89c8d169e9650e4bac64fde71fdf15b
- https://git.kernel.org/stable/c/aa38bf74899de07cf70b50cd17f8ad45fb6654c8
- https://git.kernel.org/stable/c/fa96c6baef1b5385e2f0c0677b32b3839e716076
Modified: 2024-08-19
CVE-2024-42285
In the Linux kernel, the following vulnerability has been resolved: RDMA/iwcm: Fix a use-after-free related to destroying CM IDs iw_conn_req_handler() associates a new struct rdma_id_private (conn_id) with an existing struct iw_cm_id (cm_id) as follows: conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; rdma_destroy_id() frees both the cm_id and the struct rdma_id_private. Make sure that cm_work_handler() does not trigger a use-after-free by only freeing of the struct rdma_id_private after all pending work has finished.
- https://git.kernel.org/stable/c/557d035fe88d78dd51664f4dc0e1896c04c97cf6
- https://git.kernel.org/stable/c/7f25f296fc9bd0435be14e89bf657cd615a23574
- https://git.kernel.org/stable/c/94ee7ff99b87435ec63211f632918dc7f44dac79
- https://git.kernel.org/stable/c/aee2424246f9f1dadc33faa78990c1e2eb7826e4
- https://git.kernel.org/stable/c/d91d253c87fd1efece521ff2612078a35af673c6
- https://git.kernel.org/stable/c/dc8074b8901caabb97c2d353abd6b4e7fa5a59a5
- https://git.kernel.org/stable/c/ee39384ee787e86e9db4efb843818ef0ea9cb8ae
- https://git.kernel.org/stable/c/ff5bbbdee08287d75d72e65b72a2b76d9637892a
Modified: 2024-08-19
CVE-2024-42294
In the Linux kernel, the following vulnerability has been resolved: block: fix deadlock between sd_remove & sd_release Our test report the following hung task: [ 2538.459400] INFO: task "kworker/0:0":7 blocked for more than 188 seconds. [ 2538.459427] Call trace: [ 2538.459430] __switch_to+0x174/0x338 [ 2538.459436] __schedule+0x628/0x9c4 [ 2538.459442] schedule+0x7c/0xe8 [ 2538.459447] schedule_preempt_disabled+0x24/0x40 [ 2538.459453] __mutex_lock+0x3ec/0xf04 [ 2538.459456] __mutex_lock_slowpath+0x14/0x24 [ 2538.459459] mutex_lock+0x30/0xd8 [ 2538.459462] del_gendisk+0xdc/0x350 [ 2538.459466] sd_remove+0x30/0x60 [ 2538.459470] device_release_driver_internal+0x1c4/0x2c4 [ 2538.459474] device_release_driver+0x18/0x28 [ 2538.459478] bus_remove_device+0x15c/0x174 [ 2538.459483] device_del+0x1d0/0x358 [ 2538.459488] __scsi_remove_device+0xa8/0x198 [ 2538.459493] scsi_forget_host+0x50/0x70 [ 2538.459497] scsi_remove_host+0x80/0x180 [ 2538.459502] usb_stor_disconnect+0x68/0xf4 [ 2538.459506] usb_unbind_interface+0xd4/0x280 [ 2538.459510] device_release_driver_internal+0x1c4/0x2c4 [ 2538.459514] device_release_driver+0x18/0x28 [ 2538.459518] bus_remove_device+0x15c/0x174 [ 2538.459523] device_del+0x1d0/0x358 [ 2538.459528] usb_disable_device+0x84/0x194 [ 2538.459532] usb_disconnect+0xec/0x300 [ 2538.459537] hub_event+0xb80/0x1870 [ 2538.459541] process_scheduled_works+0x248/0x4dc [ 2538.459545] worker_thread+0x244/0x334 [ 2538.459549] kthread+0x114/0x1bc [ 2538.461001] INFO: task "fsck.":15415 blocked for more than 188 seconds. [ 2538.461014] Call trace: [ 2538.461016] __switch_to+0x174/0x338 [ 2538.461021] __schedule+0x628/0x9c4 [ 2538.461025] schedule+0x7c/0xe8 [ 2538.461030] blk_queue_enter+0xc4/0x160 [ 2538.461034] blk_mq_alloc_request+0x120/0x1d4 [ 2538.461037] scsi_execute_cmd+0x7c/0x23c [ 2538.461040] ioctl_internal_command+0x5c/0x164 [ 2538.461046] scsi_set_medium_removal+0x5c/0xb0 [ 2538.461051] sd_release+0x50/0x94 [ 2538.461054] blkdev_put+0x190/0x28c [ 2538.461058] blkdev_release+0x28/0x40 [ 2538.461063] __fput+0xf8/0x2a8 [ 2538.461066] __fput_sync+0x28/0x5c [ 2538.461070] __arm64_sys_close+0x84/0xe8 [ 2538.461073] invoke_syscall+0x58/0x114 [ 2538.461078] el0_svc_common+0xac/0xe0 [ 2538.461082] do_el0_svc+0x1c/0x28 [ 2538.461087] el0_svc+0x38/0x68 [ 2538.461090] el0t_64_sync_handler+0x68/0xbc [ 2538.461093] el0t_64_sync+0x1a8/0x1ac T1: T2: sd_remove del_gendisk __blk_mark_disk_dead blk_freeze_queue_start ++q->mq_freeze_depth bdev_release mutex_lock(&disk->open_mutex) sd_release scsi_execute_cmd blk_queue_enter wait_event(!q->mq_freeze_depth) mutex_lock(&disk->open_mutex) SCSI does not set GD_OWNS_QUEUE, so QUEUE_FLAG_DYING is not set in this scenario. This is a classic ABBA deadlock. To fix the deadlock, make sure we don't try to acquire disk->open_mutex after freezing the queue.
Modified: 2024-08-22
CVE-2024-42301
In the Linux kernel, the following vulnerability has been resolved: dev/parport: fix the array out-of-bounds risk Fixed array out-of-bounds issues caused by sprintf by replacing it with snprintf for safer data copying, ensuring the destination buffer is not overflowed. Below is the stack trace I encountered during the actual issue: [ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport] [ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm: QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2 [ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp [ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024 [ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace: [ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0 [ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20 [ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c [ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc [ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38 [ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport]
- https://git.kernel.org/stable/c/166a0bddcc27de41fe13f861c8348e8e53e988c8
- https://git.kernel.org/stable/c/47b3dce100778001cd76f7e9188944b5cb27a76d
- https://git.kernel.org/stable/c/7789a1d6792af410aa9b39a1eb237ed24fa2170a
- https://git.kernel.org/stable/c/7f4da759092a1a6ce35fb085182d02de8cc4cc84
- https://git.kernel.org/stable/c/a44f88f7576bc1916d8d6293f5c62fbe7cbe03e0
- https://git.kernel.org/stable/c/ab11dac93d2d568d151b1918d7b84c2d02bacbd5
- https://git.kernel.org/stable/c/b579ea3516c371ecf59d073772bc45dfd28c8a0e
- https://git.kernel.org/stable/c/c719b393374d3763e64900ee19aaed767d5a08d6
Modified: 2024-08-22
CVE-2024-42302
In the Linux kernel, the following vulnerability has been resolved: PCI/DPC: Fix use-after-free on concurrent DPC and hot-removal Keith reports a use-after-free when a DPC event occurs concurrently to hot-removal of the same portion of the hierarchy: The dpc_handler() awaits readiness of the secondary bus below the Downstream Port where the DPC event occurred. To do so, it polls the config space of the first child device on the secondary bus. If that child device is concurrently removed, accesses to its struct pci_dev cause the kernel to oops. That's because pci_bridge_wait_for_secondary_bus() neglects to hold a reference on the child device. Before v6.3, the function was only called on resume from system sleep or on runtime resume. Holding a reference wasn't necessary back then because the pciehp IRQ thread could never run concurrently. (On resume from system sleep, IRQs are not enabled until after the resume_noirq phase. And runtime resume is always awaited before a PCI device is removed.) However starting with v6.3, pci_bridge_wait_for_secondary_bus() is also called on a DPC event. Commit 53b54ad074de ("PCI/DPC: Await readiness of secondary bus after reset"), which introduced that, failed to appreciate that pci_bridge_wait_for_secondary_bus() now needs to hold a reference on the child device because dpc_handler() and pciehp may indeed run concurrently. The commit was backported to v5.10+ stable kernels, so that's the oldest one affected. Add the missing reference acquisition. Abridged stack trace: BUG: unable to handle page fault for address: 00000000091400c0 CPU: 15 PID: 2464 Comm: irq/53-pcie-dpc 6.9.0 RIP: pci_bus_read_config_dword+0x17/0x50 pci_dev_wait() pci_bridge_wait_for_secondary_bus() dpc_reset_link() pcie_do_recovery() dpc_handler()
- https://git.kernel.org/stable/c/11a1f4bc47362700fcbde717292158873fb847ed
- https://git.kernel.org/stable/c/2c111413f38ca5cf87557cab89f6d82b0e3433e7
- https://git.kernel.org/stable/c/2cc8973bdc4d6c928ebe38b88090a2cdfe81f42f
- https://git.kernel.org/stable/c/b16f3ea1db47a6766a9f1169244cf1fc287a7c62
- https://git.kernel.org/stable/c/c52f9e1a9eb40f13993142c331a6cfd334d4b91d
- https://git.kernel.org/stable/c/f63df70b439bb8331358a306541893bf415bf1da
Modified: 2024-08-22
CVE-2024-42309
In the Linux kernel, the following vulnerability has been resolved: drm/gma500: fix null pointer dereference in psb_intel_lvds_get_modes In psb_intel_lvds_get_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a possible NULL pointer dereference on failure of drm_mode_duplicate(). Add a check to avoid npd.
- https://git.kernel.org/stable/c/13b5f3ee94bdbdc4b5f40582aab62977905aedee
- https://git.kernel.org/stable/c/2df7aac81070987b0f052985856aa325a38debf6
- https://git.kernel.org/stable/c/46d2ef272957879cbe30a884574320e7f7d78692
- https://git.kernel.org/stable/c/475a5b3b7c8edf6e583a9eb59cf28ea770602e14
- https://git.kernel.org/stable/c/6735d02ead7dd3adf74eb8b70aebd09e0ce78ec9
- https://git.kernel.org/stable/c/7e52c62ff029f95005915c0a11863b5fb5185c8c
- https://git.kernel.org/stable/c/d6ad202f73f8edba0cbc0065aa57a79ffe8fdcdc
- https://git.kernel.org/stable/c/f70ffeca546452d1acd3a70ada56ecb2f3e7f811
Modified: 2024-08-22
CVE-2024-42310
In the Linux kernel, the following vulnerability has been resolved: drm/gma500: fix null pointer dereference in cdv_intel_lvds_get_modes In cdv_intel_lvds_get_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_mode_duplicate(). Add a check to avoid npd.
- https://git.kernel.org/stable/c/08f45102c81ad8bc9f85f7a25e9f64e128edb87d
- https://git.kernel.org/stable/c/2d209b2f862f6b8bff549ede541590a8d119da23
- https://git.kernel.org/stable/c/977ee4fe895e1729cd36cc26916bbb10084713d6
- https://git.kernel.org/stable/c/a658ae2173ab74667c009e2550455e6de5b33ddc
- https://git.kernel.org/stable/c/b6ac46a00188cde50ffba233e6efb366354a1de5
- https://git.kernel.org/stable/c/cb520c3f366c77e8d69e4e2e2781a8ce48d98e79
- https://git.kernel.org/stable/c/e74eb5e8089427c8c49e0dd5067e5f39ce3a4d56
- https://git.kernel.org/stable/c/f392c36cebf4c1d6997a4cc2c0f205254acef42a
Modified: 2024-08-22
CVE-2024-42313
In the Linux kernel, the following vulnerability has been resolved: media: venus: fix use after free in vdec_close There appears to be a possible use after free with vdec_close(). The firmware will add buffer release work to the work queue through HFI callbacks as a normal part of decoding. Randomly closing the decoder device from userspace during normal decoding can incur a read after free for inst. Fix it by cancelling the work in vdec_close.
- https://git.kernel.org/stable/c/4c9d235630d35db762b85a4149bbb0be9d504c36
- https://git.kernel.org/stable/c/66fa52edd32cdbb675f0803b3c4da10ea19b6635
- https://git.kernel.org/stable/c/6a96041659e834dc0b172dda4b2df512d63920c2
- https://git.kernel.org/stable/c/72aff311194c8ceda934f24fd6f250b8827d7567
- https://git.kernel.org/stable/c/a0157b5aa34eb43ec4c5510f9c260bbb03be937e
- https://git.kernel.org/stable/c/ad8cf035baf29467158e0550c7a42b7bb43d1db6
- https://git.kernel.org/stable/c/da55685247f409bf7f976cc66ba2104df75d8dad
- https://git.kernel.org/stable/c/f8e9a63b982a8345470c225679af4ba86e4a7282
Modified: 2024-09-04
CVE-2024-42314
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when adding pages to compressed bio At add_ra_bio_pages() we are accessing the extent map to calculate 'add_size' after we dropped our reference on the extent map, resulting in a use-after-free. Fix this by computing 'add_size' before dropping our extent map reference.
Modified: 2024-12-19
CVE-2024-42315
In the Linux kernel, the following vulnerability has been resolved: exfat: fix potential deadlock on __exfat_get_dentry_set When accessing a file with more entries than ES_MAX_ENTRY_NUM, the bh-array is allocated in __exfat_get_entry_set. The problem is that the bh-array is allocated with GFP_KERNEL. It does not make sense. In the following cases, a deadlock for sbi->s_lock between the two processes may occur. CPU0 CPU1 ---- ---- kswapd balance_pgdat lock(fs_reclaim) exfat_iterate lock(&sbi->s_lock) exfat_readdir exfat_get_uniname_from_ext_entry exfat_get_dentry_set __exfat_get_dentry_set kmalloc_array ... lock(fs_reclaim) ... evict exfat_evict_inode lock(&sbi->s_lock) To fix this, let's allocate bh-array with GFP_NOFS.
- https://git.kernel.org/stable/c/1d1970493c289e3f44b9ec847ed26a5dbdf56a62
- https://git.kernel.org/stable/c/632fb232b6bbf8277edcbe9ecd4b4d98ecb122eb
- https://git.kernel.org/stable/c/89fc548767a2155231128cb98726d6d2ea1256c9
- https://git.kernel.org/stable/c/a7ac198f8dba791e3144c4da48a5a9b95773ee4b
- https://git.kernel.org/stable/c/c052f775ee6ccacd3c97e4cf41a2a657e63d4259
- https://git.kernel.org/stable/c/cd1c7858641384191ff7033fb1fc65dfcd559c6f
Modified: 2024-08-22
CVE-2024-42316
In the Linux kernel, the following vulnerability has been resolved: mm/mglru: fix div-by-zero in vmpressure_calc_level() evict_folios() uses a second pass to reclaim folios that have gone through page writeback and become clean before it finishes the first pass, since folio_rotate_reclaimable() cannot handle those folios due to the isolation. The second pass tries to avoid potential double counting by deducting scan_control->nr_scanned. However, this can result in underflow of nr_scanned, under a condition where shrink_folio_list() does not increment nr_scanned, i.e., when folio_trylock() fails. The underflow can cause the divisor, i.e., scale=scanned+reclaimed in vmpressure_calc_level(), to become zero, resulting in the following crash: [exception RIP: vmpressure_work_fn+101] process_one_work at ffffffffa3313f2b Since scan_control->nr_scanned has no established semantics, the potential double counting has minimal risks. Therefore, fix the problem by not deducting scan_control->nr_scanned in evict_folios().
Modified: 2024-08-22
CVE-2024-43828
In the Linux kernel, the following vulnerability has been resolved: ext4: fix infinite loop when replaying fast_commit When doing fast_commit replay an infinite loop may occur due to an uninitialized extent_status struct. ext4_ext_determine_insert_hole() does not detect the replay and calls ext4_es_find_extent_range(), which will return immediately without initializing the 'es' variable. Because 'es' contains garbage, an integer overflow may happen causing an infinite loop in this function, easily reproducible using fstest generic/039. This commit fixes this issue by unconditionally initializing the structure in function ext4_es_find_extent_range(). Thanks to Zhang Yi, for figuring out the real problem!
- https://git.kernel.org/stable/c/0619f7750f2b178a1309808832ab20d85e0ad121
- https://git.kernel.org/stable/c/181e63cd595c688194e07332f9944b3a63193de2
- https://git.kernel.org/stable/c/5ed0496e383cb6de120e56991385dce70bbb87c1
- https://git.kernel.org/stable/c/81f819c537d29932e4b9267f02411cbc8b355178
- https://git.kernel.org/stable/c/907c3fe532253a6ef4eb9c4d67efb71fab58c706
- https://git.kernel.org/stable/c/c6e67df64783e99a657ef2b8c834ba2bf54c539c
Modified: 2024-08-22
CVE-2024-43833
In the Linux kernel, the following vulnerability has been resolved: media: v4l: async: Fix NULL pointer dereference in adding ancillary links In v4l2_async_create_ancillary_links(), ancillary links are created for lens and flash sub-devices. These are sub-device to sub-device links and if the async notifier is related to a V4L2 device, the source sub-device of the ancillary link is NULL, leading to a NULL pointer dereference. Check the notifier's sd field is non-NULL in v4l2_async_create_ancillary_links(). [Sakari Ailus: Reword the subject and commit messages slightly.]
Modified: 2024-08-22
CVE-2024-43837
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix null pointer dereference in resolve_prog_type() for BPF_PROG_TYPE_EXT When loading a EXT program without specifying `attr->attach_prog_fd`, the `prog->aux->dst_prog` will be null. At this time, calling resolve_prog_type() anywhere will result in a null pointer dereference. Example stack trace: [ 8.107863] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 [ 8.108262] Mem abort info: [ 8.108384] ESR = 0x0000000096000004 [ 8.108547] EC = 0x25: DABT (current EL), IL = 32 bits [ 8.108722] SET = 0, FnV = 0 [ 8.108827] EA = 0, S1PTW = 0 [ 8.108939] FSC = 0x04: level 0 translation fault [ 8.109102] Data abort info: [ 8.109203] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 8.109399] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 8.109614] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 8.109836] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101354000 [ 8.110011] [0000000000000004] pgd=0000000000000000, p4d=0000000000000000 [ 8.112624] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 8.112783] Modules linked in: [ 8.113120] CPU: 0 PID: 99 Comm: may_access_dire Not tainted 6.10.0-rc3-next-20240613-dirty #1 [ 8.113230] Hardware name: linux,dummy-virt (DT) [ 8.113390] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 8.113429] pc : may_access_direct_pkt_data+0x24/0xa0 [ 8.113746] lr : add_subprog_and_kfunc+0x634/0x8e8 [ 8.113798] sp : ffff80008283b9f0 [ 8.113813] x29: ffff80008283b9f0 x28: ffff800082795048 x27: 0000000000000001 [ 8.113881] x26: ffff0000c0bb2600 x25: 0000000000000000 x24: 0000000000000000 [ 8.113897] x23: ffff0000c1134000 x22: 000000000001864f x21: ffff0000c1138000 [ 8.113912] x20: 0000000000000001 x19: ffff0000c12b8000 x18: ffffffffffffffff [ 8.113929] x17: 0000000000000000 x16: 0000000000000000 x15: 0720072007200720 [ 8.113944] x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720 [ 8.113958] x11: 0720072007200720 x10: 0000000000f9fca4 x9 : ffff80008021f4e4 [ 8.113991] x8 : 0101010101010101 x7 : 746f72705f6d656d x6 : 000000001e0e0f5f [ 8.114006] x5 : 000000000001864f x4 : ffff0000c12b8000 x3 : 000000000000001c [ 8.114020] x2 : 0000000000000002 x1 : 0000000000000000 x0 : 0000000000000000 [ 8.114126] Call trace: [ 8.114159] may_access_direct_pkt_data+0x24/0xa0 [ 8.114202] bpf_check+0x3bc/0x28c0 [ 8.114214] bpf_prog_load+0x658/0xa58 [ 8.114227] __sys_bpf+0xc50/0x2250 [ 8.114240] __arm64_sys_bpf+0x28/0x40 [ 8.114254] invoke_syscall.constprop.0+0x54/0xf0 [ 8.114273] do_el0_svc+0x4c/0xd8 [ 8.114289] el0_svc+0x3c/0x140 [ 8.114305] el0t_64_sync_handler+0x134/0x150 [ 8.114331] el0t_64_sync+0x168/0x170 [ 8.114477] Code: 7100707f 54000081 f9401c00 f9403800 (b9400403) [ 8.118672] ---[ end trace 0000000000000000 ]--- One way to fix it is by forcing `attach_prog_fd` non-empty when bpf_prog_load(). But this will lead to `libbpf_probe_bpf_prog_type` API broken which use verifier log to probe prog type and will log nothing if we reject invalid EXT prog before bpf_check(). Another way is by adding null check in resolve_prog_type(). The issue was introduced by commit 4a9c7bbe2ed4 ("bpf: Resolve to prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXT") which wanted to correct type resolution for BPF_PROG_TYPE_TRACING programs. Before that, the type resolution of BPF_PROG_TYPE_EXT prog actually follows the logic below: prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; It implies that when EXT program is not yet attached to `dst_prog`, the prog type should be EXT itself. This code worked fine in the past. So just keep using it. Fix this by returning `prog->type` for BPF_PROG_TYPE_EXT if `dst_prog` is not present in resolve_prog_type().
Modified: 2024-08-20
CVE-2024-43852
In the Linux kernel, the following vulnerability has been resolved: hwmon: (ltc2991) re-order conditions to fix off by one bug LTC2991_T_INT_CH_NR is 4. The st->temp_en[] array has LTC2991_MAX_CHANNEL (4) elements. Thus if "channel" is equal to LTC2991_T_INT_CH_NR then we have read one element beyond the end of the array. Flip the conditions around so that we check if "channel" is valid before using it as an array index.
Modified: 2024-09-04
CVE-2024-43853
In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/
- https://git.kernel.org/stable/c/10aeaa47e4aa2432f29b3e5376df96d7dac5537a
- https://git.kernel.org/stable/c/1be59c97c83ccd67a519d8a49486b3a8a73ca28a
- https://git.kernel.org/stable/c/27d6dbdc6485d68075a0ebf8544d6425c1ed84bb
- https://git.kernel.org/stable/c/29a8d4e02fd4840028c38ceb1536cc8f82a257d4
- https://git.kernel.org/stable/c/29ac1d238b3bf126af36037df80d7ecc4822341e
- https://git.kernel.org/stable/c/4e8d6ac8fc9f843e940ab7389db8136634e07989
- https://git.kernel.org/stable/c/688325078a8b5badd6e07ae22b27cd04e9947aec
- https://git.kernel.org/stable/c/96226fbed566f3f686f53a489a29846f2d538080
Modified: 2024-09-12
CVE-2024-43854
In the Linux kernel, the following vulnerability has been resolved: block: initialize integrity buffer to zero before writing it to media Metadata added by bio_integrity_prep is using plain kmalloc, which leads to random kernel memory being written media. For PI metadata this is limited to the app tag that isn't used by kernel generated metadata, but for non-PI metadata the entire buffer leaks kernel memory. Fix this by adding the __GFP_ZERO flag to allocations for writes.
- https://git.kernel.org/stable/c/129f95948a96105c1fad8e612c9097763e88ac5f
- https://git.kernel.org/stable/c/23a19655fb56f241e592041156dfb1c6d04da644
- https://git.kernel.org/stable/c/3fd11fe4f20756b4c0847f755a64cd96f8c6a005
- https://git.kernel.org/stable/c/899ee2c3829c5ac14bfc7d3c4a5846c0b709b78f
- https://git.kernel.org/stable/c/9f4af4cf08f9a0329ade3d938f55d2220c40d0a6
- https://git.kernel.org/stable/c/cf6b45ea7a8df0f61bded1dc4a8561ac6ad143d2
- https://git.kernel.org/stable/c/d418313bd8f55c079a7da12651951b489a638ac1
- https://git.kernel.org/stable/c/ebc0e91ba76dc6544fff9f5b66408b1982806a00
Modified: 2024-08-22
CVE-2024-43855
In the Linux kernel, the following vulnerability has been resolved: md: fix deadlock between mddev_suspend and flush bio Deadlock occurs when mddev is being suspended while some flush bio is in progress. It is a complex issue. T1. the first flush is at the ending stage, it clears 'mddev->flush_bio' and tries to submit data, but is blocked because mddev is suspended by T4. T2. the second flush sets 'mddev->flush_bio', and attempts to queue md_submit_flush_data(), which is already running (T1) and won't execute again if on the same CPU as T1. T3. the third flush inc active_io and tries to flush, but is blocked because 'mddev->flush_bio' is not NULL (set by T2). T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc by T3. T1 T2 T3 T4 (flush 1) (flush 2) (third 3) (suspend) md_submit_flush_data mddev->flush_bio = NULL; . . md_flush_request . mddev->flush_bio = bio . queue submit_flushes . . . . md_handle_request . . active_io + 1 . . md_flush_request . . wait !mddev->flush_bio . . . . mddev_suspend . . wait !active_io . . . submit_flushes . queue_work md_submit_flush_data . //md_submit_flush_data is already running (T1) . md_handle_request wait resume The root issue is non-atomic inc/dec of active_io during flush process. active_io is dec before md_submit_flush_data is queued, and inc soon after md_submit_flush_data() run. md_flush_request active_io + 1 submit_flushes active_io - 1 md_submit_flush_data md_handle_request active_io + 1 make_request active_io - 1 If active_io is dec after md_handle_request() instead of within submit_flushes(), make_request() can be called directly intead of md_handle_request() in md_submit_flush_data(), and active_io will only inc and dec once in the whole flush process. Deadlock will be fixed. Additionally, the only difference between fixing the issue and before is that there is no return error handling of make_request(). But after previous patch cleaned md_write_start(), make_requst() only return error in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape)". Since dm always splits data and flush operation into two separate io, io size of flush submitted by dm always is 0, make_request() will not be called in md_submit_flush_data(). To prevent future modifications from introducing issues, add WARN_ON to ensure make_request() no error is returned in this context.
Modified: 2024-08-22
CVE-2024-43856
In the Linux kernel, the following vulnerability has been resolved: dma: fix call order in dmam_free_coherent dmam_free_coherent() frees a DMA allocation, which makes the freed vaddr available for reuse, then calls devres_destroy() to remove and free the data structure used to track the DMA allocation. Between the two calls, it is possible for a concurrent task to make an allocation with the same vaddr and add it to the devres list. If this happens, there will be two entries in the devres list with the same vaddr and devres_destroy() can free the wrong entry, triggering the WARN_ON() in dmam_match. Fix by destroying the devres entry before freeing the DMA allocation. kokonut //net/encryption http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03
- https://git.kernel.org/stable/c/1fe97f68fce1ba24bf823bfb0eb0956003473130
- https://git.kernel.org/stable/c/22094f5f52e7bc16c5bf9613365049383650b02e
- https://git.kernel.org/stable/c/257193083e8f43907e99ea633820fc2b3bcd24c7
- https://git.kernel.org/stable/c/28e8b7406d3a1f5329a03aa25a43aa28e087cb20
- https://git.kernel.org/stable/c/2f7bbdc744f2e7051d1cb47c8e082162df1923c9
- https://git.kernel.org/stable/c/87b34c8c94e29fa01d744e5147697f592998d954
- https://git.kernel.org/stable/c/f993a4baf6b622232e4c190d34c220179e5d61eb
- https://git.kernel.org/stable/c/fe2d246080f035e0af5793cb79067ba125e4fb63
Modified: 2024-12-09
CVE-2024-43857
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null reference error when checking end of zone This patch fixes a potentially null pointer being accessed by is_end_zone_blkaddr() that checks the last block of a zone when f2fs is mounted as a single device.
Modified: 2024-08-22
CVE-2024-43858
In the Linux kernel, the following vulnerability has been resolved: jfs: Fix array-index-out-of-bounds in diFree
- https://git.kernel.org/stable/c/538a27c8048f081a5ddd286f886eb986fbbc7f80
- https://git.kernel.org/stable/c/55b732c8b09b41148eaab2fa8e31b0af47671e00
- https://git.kernel.org/stable/c/63f7fdf733add82f126ea00e2e48f6eba15ac4b9
- https://git.kernel.org/stable/c/6aa6892a90a5a7fabffe5692ab9f06a7a46c6e42
- https://git.kernel.org/stable/c/8d8f9a477de0d7962342eedf2a599215b7c63d28
- https://git.kernel.org/stable/c/9b3a4345957f5372041bc4f59de322f62653e862
- https://git.kernel.org/stable/c/f73f969b2eb39ad8056f6c7f3a295fa2f85e313a
- https://git.kernel.org/stable/c/ff14eadc278663cac69d57d3ca7fb2f394e1f8a7
Modified: 2024-09-08
CVE-2024-43859
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to truncate preallocated blocks in f2fs_file_open() chenyuwen reports a f2fs bug as below: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000011 fscrypt_set_bio_crypt_ctx+0x78/0x1e8 f2fs_grab_read_bio+0x78/0x208 f2fs_submit_page_read+0x44/0x154 f2fs_get_read_data_page+0x288/0x5f4 f2fs_get_lock_data_page+0x60/0x190 truncate_partial_data_page+0x108/0x4fc f2fs_do_truncate_blocks+0x344/0x5f0 f2fs_truncate_blocks+0x6c/0x134 f2fs_truncate+0xd8/0x200 f2fs_iget+0x20c/0x5ac do_garbage_collect+0x5d0/0xf6c f2fs_gc+0x22c/0x6a4 f2fs_disable_checkpoint+0xc8/0x310 f2fs_fill_super+0x14bc/0x1764 mount_bdev+0x1b4/0x21c f2fs_mount+0x20/0x30 legacy_get_tree+0x50/0xbc vfs_get_tree+0x5c/0x1b0 do_new_mount+0x298/0x4cc path_mount+0x33c/0x5fc __arm64_sys_mount+0xcc/0x15c invoke_syscall+0x60/0x150 el0_svc_common+0xb8/0xf8 do_el0_svc+0x28/0xa0 el0_svc+0x24/0x84 el0t_64_sync_handler+0x88/0xec It is because inode.i_crypt_info is not initialized during below path: - mount - f2fs_fill_super - f2fs_disable_checkpoint - f2fs_gc - f2fs_iget - f2fs_truncate So, let's relocate truncation of preallocated blocks to f2fs_file_open(), after fscrypt_file_open().
Modified: 2024-08-22
CVE-2024-43860
In the Linux kernel, the following vulnerability has been resolved: remoteproc: imx_rproc: Skip over memory region when node value is NULL In imx_rproc_addr_init() "nph = of_count_phandle_with_args()" just counts number of phandles. But phandles may be empty. So of_parse_phandle() in the parsing loop (0 < a < nph) may return NULL which is later dereferenced. Adjust this issue by adding NULL-return check. Found by Linux Verification Center (linuxtesting.org) with SVACE. [Fixed title to fit within the prescribed 70-75 charcters]
- https://git.kernel.org/stable/c/2fa26ca8b786888673689ccc9da6094150939982
- https://git.kernel.org/stable/c/4e13b7c23988c0a13fdca92e94296a3bc2ff9f21
- https://git.kernel.org/stable/c/6884fd0283e0831be153fb8d82d9eda8a55acaaa
- https://git.kernel.org/stable/c/6b50462b473fdccdc0dfad73001147e40ff19a66
- https://git.kernel.org/stable/c/6c9ea3547fad252fe9ae5d3ed7e066e2085bf3a2
- https://git.kernel.org/stable/c/84beb7738459cac0ff9f8a7c4654b8ff82a702c0
- https://git.kernel.org/stable/c/9a17cf8b2ce483fa75258bc2cdcf628f24bcf5f8
- https://git.kernel.org/stable/c/c877a5f5268d4ab8224b9c9fbce3d746e4e72bc9